التصنيفات
الصف التاسع

تلخيص وحدة الطاقة الذرية الصف التاسع

أريد تلخيص عن وحدة الطاقة الذرية بأقصى سرعة أرجوكم[COLOR="rgb(255, 0, 255)"][/COLOR]

ها الي حصلته

والسموحه تم تغير العنوان ليتناسب مع فحوى الموضوع

تأكد من التلخيص

بالتوفيق ..

تلخيص الطاقة الذرية

النشاط الإشعاعي أو الانحلال الإشعاعي: العملية التي تطلق بواسطتها نواة غير مستقرة إشعاعاً نووياً.
العدد الكتلي: مجموع عددي البروتونات والنيوترونات في نواة ذرة.

أنواع الانحلال الإشعاعي:
انحلال الفا انحلال بيتا انحلال جاما
هو انبعاث جسيم الفا هو إطلاق جسيم بيتا هو إطلاق أشعة جاما
يتكون جسيم الفا من بروتونين ونيوترونين يتكون من الكترون أو بوزيترون يتكون من أشعة جاما (هي ضوء غير مرئي له طاقة مرتفعة كبيرة)
العدد الكتلي 4
الشحنة 2 ليس لها عدد كتلي
الشحنة -1 أو +1 ليس لها عدد كتلي
ليس لها شحنة
تتحول النواة إلى نواة عنصر جديد، مثال: الراديوم -226 تتحول النواة إلى نواة عنصر جديد، مثال: الكربون -14 لا تتحول إلى نواة عنصر جديد لأنه يحدث عندما تغير الجسيمات في النواة مواقعها
توقفها ملابس أو ورقة توقفها رقاقة الألمنيوم توقفها بضعة سنتيمترات من الرصاص أو بضعة أمتار من الأسمنت

تأثيرات الأشعة على المادة:
المادة الحية: حروق وسرطان ومرض إشعاعي (أعراضه: وهن، فقدان شهية، سقوط الشعر، تلف خلايا الدم)
بالمادة الغير حية: تفكك الروابط الكيميائية وتخرب هياكل الفلزية للأبنية.

عمر النصف: مقدار الزمن اللازم لكي ينحل نصف أنوية النظير المشع.
عمر النصف للكربون -14 يساوي 5730 سنة
عمر النصف للبوتاسيوم -40 يساوي 1.3 مليار سنة وقد استخدم لمعرفة عمر أحافير الديناصور.

استخدامات النشاط الإشعاعي
كشف العيوب في المواد وتعقيم المنتجات وتشخيص الأمراض وتوليد الطاقة الكهربائية وعلاج السرطان.

إنتاج الطاقة من النواة
1- الانشطار النووي: هي عملية تنقسم خلالها نواة كبيرة إلى نواتين صغيرتين وتنطلق طاقة نتيجة تحول جزء من كتلة النواة الأصلية.
يحدث الانشطار عندما تقذف أنوية ذرات كبيرة بنيوترونات.
الكتلة الكلية للنواتج أقل بقليل من الكتلة الكلية للمتفاعلات بسبب تحول بعض من المادة إلى طاقة.

التفاعل النووي المتسلسل: تفاعلات انشطار نووي متتالية ومتواصلة.
له نوعان: تفاعل نووي متسلسل غير متحكم فيه. مثال عليه: قنبلة نووية.
تفاعل نووي متسلسل متحكم فيه. مثال عليه: المحطة النووية لتوليد الطاقة الكهربائية حيث تمتص قضبان التحكم الرمادية النيوترونات.

أضرار الانشطار النووي: 1- حوادث، 2- نفايات.

الوقود النووي مقابل الوقود الأحفوري
الفوائد: الوقود النووي تكاليفه أقل ولا يصدر غاز ثاني أكسيد الكربون ويسمح بتوفير الوقود الأحفوري لمدة أطول
أضراره: بناء المحطات النووية مكلف جداً- أخطار حوادثه كبير- مشكلات تخزين النفايات.

الاندماج النووي: اتحاد أنوية ذرات صغيرة لتشكيل نواة أكبر وتطلق طاقة.
لكي يحدث الاندماج يجب التغلب على قوى التنافر بين الأنوية ذات الشحنات الموجبة، يحتاج الاندماج إلى درجة حرارة مرتفعة جداً- أكثر من 100,000,000 درجة سيليزية عند درجة الحرارة هذه تكون المادة في حالة بلازما. البلازما هي حالة المادة عندما تكون بصورة غازات متآينة أي مزيجاً من الأيونات والإلكترونات والمكان الوحيد لذلك قلب الشمس.

فوائد الاندماج النووي:
عرضة لحوادث أقل
محيطات من الوقود
نفايات أقل: نواتج الاندماج النووي ليست مشعة والهيدروجين -3 المستخدم كوقود في مفاعلات الاندماج أقل إشعاعاً بكثير من اليورانيوم المستخدم في مفاعلات الانشطار.

م/ن

يييييبققق

يزآج آلله خير , إماراتية "

عسَـآج ع آلقوه , موفقين

شكرا التلخيص الرائع

لا الـــه الا الله

التصنيفات
الصف الثامن

بحث عن الطاقة الكهربائية في العالم للصف الثامن

بليييييييييييييييييييييز ساعدوني واخر تسليم البحث تاااريييييييييخ 15-11-2017

السموحه تم تعديل العنوان ..

ها الي حصلته

طرق توليد الطاقة الكهربائية

Generation of Electrical Energy
إن عملية توليد أو إنتاج الطاقة الكهربائية هي في الحقيقة عملية تحويل الطاقة من شكل الى آخر حسب مصادر الطاقة المتوفرة في مراكز الطلب على الطاقة الكهربائية وحسب الكميات المطلوبة لهذه الطاقة ، الأمر الذي يحدد أنواع محطات التوليد وكذلك أنواع الاستهلاك وأنواع الوقود ومصادره كلها تؤثر في تحديد نوع المحطة ومكانها وطاقتها .

أنواع محطات التوليد :
نذكر هنا أنواع محطات التوليد المستعملة على صعيد عالمي ونركز على الأنواع المستعملة في بلادنا :
– محطات التوليد البخارية .
– محطات التوليد النووية .
– محطات التوليد المائية .
– محطات التوليد من المد والجزر
– محطات التوليد ذات الاحتراق الداخلي (ديزل – غازية)
– محطات التوليد بواسطة الرياح.
– محطات التوليد بالطاقة الشمسية.

-محطات التوليد البخارية
تعتبر محطات التوليد البخارية محولا للطاقة (Energy Converter)
وتستعمل هذه المحطات أنواع مختلفة من الوقود حسب الأنواع المتوفرة مثل الفحم الحجري أو البترول السائل أو الغاز الطبيعي أو الصناعي .
تمتاز المحطات البخارية بكبر حجمها ورخص تكاليفها بالنسبة لإمكاناتها الضخمة كما تمتاز بإمكانية استعمالها لتحلية المياه المالحة ، الأمر الذي يجعلها ثنائية الإنتاج خاصة في البلاد التي تقل فيها مصادر المياه العذبة .

اختيار مواقع المحطات البخارية Site Selection of Steam Power Station
تتحكم في اختيار المواقع المناسبة لمحطات التوليد الحرارية عدة عوامل مؤثرة نذكر منهاما يلي :
القرب من مصادر الوقود وسهولة نقله إلى هذه المواقع وتوفر وسائل النقل الاقتصادية.
القرب من مصادر مياه التبريد لأن المكثف يحتاج إلى كميات كبير من مياه التبريد . لذلك تبنى هذه المحطات عادة على شواطئ البحار أو بالقرب من مجاري الأنهار.
القرب من مراكز استهلاك الطاقة الكهربائية لتوفير تكاليف إنشاء خطوط النقل . مراكز الاستهلاك هي عادة المدن والمناطق السكنية والمجمعات التجارية والصناعية
وتعتمد محطات التوليد البخارية على استعمال نوع الوقود المتوفر وحرقه في أفران خاصة لتحويل الطاقة الكيميائية في الوقود الى طاقة حرارية في اللهب الناتج من عملية الاحتراق ثم استعمال الطاقة الحرارية في تسخين المياه في مراجل خاصة (BOILERS) وتحويلها الى بخار في درجة حرارة وضغط معين ثم تسليط هذا البخار على عنفات أو توربينات بخارية صممت لهذه الغاية فيقوم البخار السريع بتدوير محور التوربينات وبذلك تتحول الطاقة الحرارية الى طاقة ميكانيكية على محور هذه التوربينات . يربط محور المولد الكهربائي ربطا مباشرا مع محور التوربينات البخارية فيدور محور المولد الكهربائي (AL TERNATOR) بنفس السرعة وباستغلال خاصة المغناطيسية الدوارة (ROTOR) من المولد والجزء الثابت (STATOR) منه تتولد على طرفي الجزء الثابت من المولد الطاقة الكهربائية اللازمة .

لا يوجد فوارق أساسية بين محطات التوليد البخارية التي تستعمل أنواع الوقود المختلفة إلا من حيث طرق نقل وتخزين وتداول وحرق الوقود . وقد كان استعمال الفحم الحجري شائعا في أواخر القرن الماضي وأوائل هذا القرن ، إلا أن اكتشاف واستخراج البترول ومنتوجاته احدث تغييرا جذريا في محطات التوليد الحرارية حيث اصبح يستعمل بنسبة تسعين بالمئة لسهولة نقله وتخزينه وحرقة إن كان بصورة وقود سائل أو غازي .

مكونات محطات التوليد البخارية :


تتألف محطات التوليد البخارية بصورة عامة من الأجزاء الرئيسية التالية :


أ ) الفرن : Furnace


وهو عبارة عن وعاء كبير لحرق الوقود . ويختلف شكل ونوع هذا الوعاء وفقا لنوع الوقود المستعمل ويلحق به وسائل تخزين ونقل وتداول الوقود ورمي المخلفات الصلبة



ب ) المرجل : Boiler


وهو وعاء كبير يحتوي على مياه نقية تسخن بواسطة حرق الوقود لتتحول هذه المياه الى بخار . وفي كثير من الأحيان يكون الفرن والمرجل في حيز واحد تحقيقا للاتصال المباشر بين الوقود المحترق والماء المراد تسخينه .


وتختلف أنواع المراجل حسب حجم المحطة وكمية البخار المنتج في وحدة الزمن .


ج ) العنفة الحرارية أو التوربين Turbine


وهي عبارة عن عنفة من الصلب لها محور ويوصل به جسم على شكل أسطواني مثبت به لوحات مقعرة يصطدم فيها البخار فيعمل على دورانها ويدور المحور بسرعة عالية جدا حوالي 3000 دورة بالدقيقة وتختلف العنفات في الحجم والتصميم والشكل باختلاف حجم البخار وسرعته وضغطه ودرجة حرارته ، أي باختلاف حجم محطة التوليد .



د ) المولد الكهربائي : Generator


هو عبارة عن مولد كهربائي مؤلف من عض دوار مربوط مباشرة مع محور التوربين وعضو ثابت .ويلف العضوين بالأسلاك النحاسية المعزولة لتنقل الحقل المغناطيسي الدوار وتحوله إلى تيار كهربائي على أطراف العضو الثابت . ويختلف شكل هذا المولد باختلاف حجم المحطة .



هـ ) المكثف: Condenser


وهو عبارة عن وعاء كبير من الصلب يدخل اليه من الأعلى البخار الآتي من التوربين بعد أن يكون قد قام بتدويرها وفقد الكثير من ضغطه ودرجة حرارته ، كما يدخل في هذا المكثف من أسفل تيار من مياه التبريد داخل أنابيب حلزونية تعمل على تحويل البخار الضعيف إلى مياه حيث تعود هذه المياه إلى المراجل مرة أخرى بواسطة مضخات خاصة .



و) المدخنة : Chimney


وهي عبارة عن مدخنة من الآجر الحراري ( Brick) أسطوانية الشكل مرتفعة جدا تعمل على طرد مخلفات الاحتراق الغازية إلى الجو على ارتفاع شاهق للإسراع في طرد غازات الاحتراق والتقليل من تلوث البيئة المحيطة بالمحطة .



ز) الآلات والمعدات المساعدة : Auxiliaries



وهي عبارة عن عدد كبير من المضخات والمحركات الميكانيكية والكهربائية ومنظمات السرعة ومعدات تحميص البخار التي تساعد على إتمام العمل في محطات التوليد .



يتبع

-محطات التوليد النووية : Nuclear Power Station


محطات التوليد النووية نوعا من محطات التوليد الحرارية لأنها تعمل بنفس المبدأ وهو توليد البخار بالحرارة وبالتالي يعمل البخار على تدوير التوربينات التي بدورها تدور الجزء الدوار من المولد الكهربائي وتتولد الطاقة الكهربائية على أطراف الجزء الثابت من هذا المولد .


والفرق في محطات التوليد النووية أنه بدل الفرن الذي يحترق فيه الوقود يوجد هنا مفاعل ذري تتولد في الحرارة نتيجة انشطار ذرات اليورانيوم بضربات الإلكترونات المتحركة في الطبقة الخارجية للذرة وتستغل هذه الطاقة الحرارية الهائلة في غليان المياه في المراجل وتحويلها إلى بخار ذي ضغط عال ودرجة مرتفعة جدا.


تحتوي محطة التوليد النووية على الفرن الذري الذي يحتاج إلى جدار عازل وواق من الإشعاع الذري وهو يتكون من طبقة من الآجر الناري وطبقة من المياه وطبقة من الحديد الصلب ثم طبقة من الأسمنت تصل إلى سمك مترين وذلك لحماية العاملين في المحطة والبيئة المحيطة من التلوث بالإشعاعات الذرية .


* أن أول محطة توليد حرارية نووية في العالم نفذت في عام 1954 وكانت في الاتحاد السوفيتي بطاقة 5 ميغاواط . .

ومحطات التوليد النووية غير مستعملة في البلاد العربية حتى الآن . ولكن محطات التوليد الحرارية البخارية مستعملة بصورة كثيفة على البحر الأحمر والبحر الأبيض المتوسط والخليج العربي في توليد الكهرباء ولتحلية المياه المالحة .

-محطات التوليد المائية : Hydraulic Power Stations

حيث توجد المياه في أماكن مرتفعة كالبحيرات ومجاري الأنهار يمكن التفكير بتوليد الطاقة ، خاصة إذا كانت طبيعة الأرض التي تهطل فيها الأمطار أو تجري فيها الأنهار جبلية ومرتفعة. ففي هذه الحالات يمكن توليد الكهرباء من مساقط المياه . أما إذا كانت مجاري الأنهار ذات انحدار خفيف فيقتضي عمل سدود في الأماكن المناسبة من مجرى النهر لتخزين المياه . تنشاء محطات التوليد عادة بالقرب من هذه السدود كما هو الحال في مجرى نهر النيل. وقد بني السد العالي وبنيت معه محطة توليد كهرباء بلغت قدرتها المركبة 1800 ميغاواط . وعلى نهر الفرات في شمال سوريا بني سد ومحطة توليد كهرباء بلغت قدرتها المركبة 800 ميغاواط .


إذا كان مجرى النهر منحدرا انحدار كبيرا فيمكن عمل تحويرة في مجرى النهر باتجاه أحد الوديان المجاورة وعمل شلال اصطناعي . هذا بالإضافة إلى الشلالات الطبيعية التي تستخدم مباشرة لتوليد الكهرباء كما هو حاصل في شلالات نياغرا بين كندا والولايات المتحدة . وبصورة عامة أن أية كمية من المياه موجودة على ارتفاع معين تحتوي على طاقة كامنة في موقعها . فإذا هبطت كمية المياه إلى ارتفاع ادنى تحولت الطاقة الكامنة إلى طاقة حركية . وإذا سلطت كمية المياه على توربينة مائية دارت بسرعة كبيرة وتكونت على محور التوربينة طاقة ميكانيكية . وإذا ربطت التوربينة مع محور المولد الكهربائي تولد على أطراف العضو الثابت من المولد طاقة كهربائية .

مكونات محطة التوليد المائية : Components of Hydro-Electric Station


تتألف محطة توليد الكهرباء المائية بصورة عامة من الأجزاء الرئيسية التالية.


أ0مساقط المياه (المجرى المائل) Penstock


وهو عبارة عن أنبوب كبير أو أكثر يكون في اسفل السد أو من أعلى الشلال إلى مدخل التوربينة وتسيل في المياه بسرعة كبيرة . يوجد سكر في أوله (بوابة) (VALVE) وسكر آخر في آخره للتحكم في كمية المياه التي تدور التوربينة .


تجدر الإشارة الى أن السدود وبوابات التحكم وأقنية المياه الموصلة للأنابيب المائلة تختلف حسب كمية المياه وأماكن تواجدها .

ب. التوربين: Turbine


تكون التوربينة والمولد عادة في مكان واحد مركبين على محور رأسي واحد . يركب المولد فوق التوربينة . وعندما تفتح البوابة في اسفل الأنابيب المائلة تتدفق المياه بسرعة كبيرة في تجاويف مقعرة فتدور بسرعة وتدير معها العضو الدوار في المولد حيث تتولد الطاقة الكهربائية على أطراف هذا المولد .

ج ) أنبوبة السحب : Draught Tubes


بعد أن تعمل المياه المتدفقة في تدوير التوربين فلا بد من سحبها للخارج بسرعة ويسر حتى لا تعوق الدوران . لذا توضع أنابيب بأشكال خاصة لسحبها للخارج السرعة اللازمة.

د) المعدات والآلات المساعدة : Auxiliaries


تحتاج محطات التوليد المائية آلي العديد من الآلات المساعدة مثل المضخات والبوابات والمفاتيح ومعدات تنظيم سرعة الدوران وغيرها .

-محطات التوليد من المد والجزر Tidal Power Stations


المد والجزر من الظواهر الطبيعية المعروفة عند سكان سواحل البحار . فهم يرون مياه البحر ترتفع في بعض ساعات اليوم وتنخفض في البعض الآخر . وقد لا يعلمون أن هذا الارتفاع ناتج عن جاذبية القمر عندما يكون قريبا من هذه السواحل وان ذلك الانخفاض يحدث عندما يكون القمر بعيدا عن هذه السواحل ، أي عندما يغيب القمر ، علما أن القمر يدور حول الأرض في مدار أهليجي أي بيضاوي الشكل دورة كل شهر هجري ، وأن الأرض تدور حول نفسها كل أربع وعشرين ساعة . فإذا ركزنا الانتباه على مكان معين ، وكان القمر ينيره في الليل ، فهذا معناه أنه قريب من ذلك المكان وان جاذبيته قوية . لذا ترتفع مياه البحر . وبعد مضي أثنى عشرة ساعة من ذلك الوقت ، يكون القمر بالجزء المقابل قطريا ، أي بعيدا عن المكان ذاته بعدا زائدا بطول قطر الكرة الأرضية فيصبح اتجاه جاذبية القمر معاكسة وبالتالي ينخفض مستوى مياه البحر .


واكثر بلاد العالم شعورا بالمد والجزر هو الطرف الشمالي الغربي من فرنسا حيث يعمل مد وجزر المحيط الأطلسي على سواحل شبه جزيرة برنتانيا إلى ثلاثين مترا وقد أنشئت هناك محطة لتوليد الطاقة الكهربائية بقدرة 400 ميغاواط . حيث توضع توربينات خاصة في مجرى المد فتديرها المياه الصاعدة ثم تعود المياه الهابطة وتديرها مرة أخرى .


ومن الأماكن التي يكثر فيها المد والجزر السواحل الشمالية للخليج العربي في منطقة الكويت حيث يصل أعلى مد إلى ارتفاع 11 مترا ولكن هذه الظاهرة لا تستغل في هذه المناطق لتوليد الطاقة الكهربائية .

حطات التوليد ذات الاحتراق الداخلي : Internal Combustion Engines


محطات التوليد ذات الاحتراق الداخلي هي عبارة عن الآت تستخدم الوقود السائل (Fuel Oil) حيث يحترق داخل غرف احتراق بعد مزجها بالهواء بنسب معينة ، فتتولد نواتج الاحتراق وهي عبارة عن غازات على ضغط مرتفع تستطيع تحريك المكبس كما في حالة ماكينات الديزل أو تستطيع تدوير التوربينات حركة دورا نية كما في حالة التوربينات الغازية .

توليد الكهرباء بواسطة الديزل Diesel Power Station


تستعمل ماكينات الديزل في توليد الكهرباء في أماكن كثيرة في دول الخليج وخاصة في المدن الصغيرة والقرى . وهي تمتاز بسرعة التشغيل وسرعة الإيقاف ولكنها تحتاج الى كمية مرتفعة من الوقود نسبيا وبالتالي فان كلفة الطاقة المنتجة منها تتوقف على أسعار الوقود . ومن ناحية أخرى لا يوجد منها وحدات ذات قدرات كبيرة . (3 ميغاواط فقط). وهذا المولدات سهلة التركيب وتستعمل كثيرة في حالات الطوارئ أو أثناء فترة ذروة الحمل . وفي هذه الحالة يعمل عادة عدد كبير من هذه المولدات بالتوازي لسد احتياجات مراكز الاستهلاك.

توليد الكهرباء بالتوربينات الغازية Gas Turbine


تعتبر محطات توليد الكهرباء العاملة بالتوربينات الغازية حديثة العهد نسبيا ويعتبر الشرق الأوسط من اكثر البلدان استعمالا لها . وهي ذات سعات وأحجام مختلفة من 1 ميغاواط الى 250ميغاواط ، تستعمل عادة أثناء ذروة الحمل في البلدان التي يوجد فيها محطات توليد بخارية أو مائية ، علما أن فترة إقلاعها وإيقافها تتراوح بين دقيقتين وعشرة دقائق.


وفي معظم الشرق الأوسط ، وخاصة في المملكة العربية السعودية ، فتستعمل التوربينات الغازية لتوليد الطاقة طوال اليوم بما فيه فترة الذروة . ونجد اليوم في الأسواق وحدات متنقلة من هذه المولدات لحالات الطوارئ مختلفة الأحجام والقدرات .


تمتاز هذه المولدات ببساطتها ورخص ثمنها نسبيا وسرعة تركيبها وسهولة صيانتها وهي لا تحتاج إلى مياه كثيرة للتبريد . كما تمتاز بإمكانية استعمال العديد من أنواع الوقود ( البترول الخام النقي – الغاز الطبيعي – الغاز الثقيل وغيرها … ) وتمتاز كذلك بسرعة التشغيل وسرعة الإيقاف .


وأما سيئاتها فهي ضعف المردود الذي يتراوح بين 15 و 25 % كما أن عمرها الزمني قصير نسبيا وتستهلك كمية اكبر من الوقود بالمقارنة مع محطات التوليد الحرارية البخارية .


مكونات محطات التوربينات الغازية Components of Gas Turbines

إن الأجزاء الرئيسية التي تتكون منها محطة التوليد بالتوربينات الغازية هي ما يلي :


أ ) ضاغط الهواء The Air Compressor


وهو يأخذ الهواء من الجو المحيط ويرفع ضغطه الى عشرات الضغوط الجوية .

ب) غرفة الاحتراق The Combustion Chamber


وفيها يختلط الهواء المضغوط الآتي من مكبس الهواء مع الوقود ويحترقان معا بواسطة وسائل خاصة بالاشتعال . وتكون نواتج الاحتراق من الغازات المختلفة على درجات حرارة عالية وضغط مرتفع .

ج ) التوربين The Turbine


وهي عبارة عن توربين محورها أفقي مربوط من ناحية مع محور مكبس الهواء مباشرة و من ناحية أخرى مع المولد ولكن بواسطة صندوق تروس لتخفيف السرعة لأن سرعة دوران التوربين عالية جدا لا تتناسب مع سرعة دوران المولد الكهربائي . تدخل الغازات الناتجة عن الاحتراق في التوربين فتصطدم بريشها الكثيرة العدد من ناحية الضغط المنخفض ( يتسع قطر التوربين من هذه الناحية) الى الهواء عن طريق مدخنة .

د ) المولد الكهربائي The Generator


يتصل المولد الكهربائي مع التوربين بواسطة صندوق تروس لتخفيف السرعة كما ذكرنا وفي بعض التوربينات الحديثة تقسم التوربين الى توربينتين واحدة للضغط والسرعة العالية متصلة مباشرة مع مكبس الهواء والثانية تسمى توربينة القدرة متصلة مباشرة مع محور المولد الكهربائي .

هـ ) الآلات والمعدات المساعدة Auxiliaries


تحتاج محطات التوربينات الغازية الى بعض المعدات والآلات المساعدة على النحو التالي :


مصافي الهواء قبل دخوله الى مكبس الهواء .


مساعد التشغيل الأولي وهو اما محرك ديزل أو محرك كهربائي .


وسائل المساعدة على الاشتعال .


آلات تبريد مياه تبريد المحطة .


معدات قياس الحرارة والضغط في كل مرحلة من مراحل العمل .


معدات القياس الكهربائية المعروفة المختلفة .

6-محطات توليد الكهرباء بواسطة الرياح : Win Power Station


يمكن استغلال الرياح في الأماكن التي تعتبر مجاري دائمة لهذه الرياح في تدوير مراوح كبيرة وعالية لتوليد الطاقة الكهربائية . وعلى سبيل المثال هناك مدن صغيرة في الولايات المتحدة واوروبا تستمد الطاقة الكهربائية اللازمة للاستهلاك اليومي من محطة توليد كهرباء تعمل بالرياح يبلغ طول شفرة مروحتها 25 مترا .

-محطات التوليد بالطاقة الشمسية.


ما يمكن أن ينتج عنه أعمال تطبيقية أصبحت في التداول التجاري هي استغلال الطاقة الشمسية لانتاج الطاقة الكهربائية وفي تسخين مياه الاستعمال المنزلي وخاصة في التجمعات الطلابية


والعمالية . للتفصيل انتقل الى الطاقة الشمسية

م/ن

السلام عليكم..

تسلمين الغلا عالبحث..

ويعله فميزان حسناتج يارب.

تم التقييم+++

أنا كمان عندي بحث شوفوا

الطاقة الكهربائية

ما هي الكهرباء؟
حسب النظرية المكروسكوبية (المجهرية) التي قدمها هندريك انطوان لونتز سنة 1895,(1853-1928)فان الكهرباء هي الطاقة التي تخلقها حركة الالكترونات في جسم موصل.
ومن هذه الحركة يتولد التيار الكهربائي.ويمكن ان يتولد تيار كهربائي ,ايضا ,نتيجة فصل الكترونات عن ذرتها عن طريق الاحتكاك او الحرارة او المفعول الكيماوي ("قصف"تلك الالكترونات بالكترونات اخرى).وهنالك عناصر "تخلي سبيل " ذراتها دون ان يتطلب ذلك جهدا كبيرا:انها المواصلات (النحاس,الفضة,الالومنيوم).اما الهواء وبعض المواد مثل الزجاج والمطاط ,فهي عازلة .
تتولد الكهرباء عن الديناموات (مولدات).والدينامو عبارة عن وشيعة يلتف حولها سلك موصل , وتدور بين قطبين مغناطيسيين.
وقد قام فاردي بتجربة,في هذا المضمار,سنة1831 وقد قام وشيعة (من الصنف المذكور ) من حقل مغناطيسي ,ثم يبعدها عنه بالتناوب. والتربينه البخارية هي الاداه المستعملة غالبا لجعل الديناموات تدور. والتربينات الهيدروليكية هي التي تشغل المحطات الموجودة قرب الشلالات او السدود كما ان عدد المحطات النووية المعتمدة بدورها لنفس الهدف,في تزايد مستمر.ويستعمل الفحم والمازوت عادة لتسخين ماء التربينات البخارية
ولكن الجانب السلبي في هذا يتمثل في كونهما يلوثان الهواء. اضافة الى هذا فان معدل ما يستهلك منهما الان يجعلنا نستخلص انهما سيستنفذان بعد حوالي قرنين. فما هو الحل الذي سيتم اللجوء اليه اذاك؟
لا شك ان المشروع الذي اشرنا اليه سينجز,ولكن ذالك لن يتم في وقت قريب وبالتالي فلن تتوافر 20000 مليار من الكيلوواطات (ضعف القدر الضروري الان) سنة 2000,بهذه الطريقة التي ما تزال تنتمي الى مجال التصور الذهني. بالنظر الى كل هذا,صيغت مشاريع اخرى,وهي الان قيد الدرس.وهناك واحد من بينها يقتضي استعمال الطاقة الناتجة عن المد. بل ان هناك مصنعا يشتغل بهذه الطاقة في فرنسا (يشرف على مصب "الرانس" ببريطانيا)وينتج حوالي 30000كيلوواط.
تاريخ الكهرباء:
اصل كلمة كهرباء العربية كهربا ( وهو صمغ شجرة اذا حك صار يجذب التبن نحوه).
فالكهرباء الستاتيكية (السكونية)هي اول ما عرف من اشكال الكهرباء . ويمكن بالفعل ان تتولد
اذا ما حكت قطعة راتنج (مادة صمغية تنتجها بعض النباتات ) شبيهة بالعنبر…
بعد ذلك بمائة وثلاثين سنة . الانجليزي ستيفن غراي (1670-1736) جمع لائحة تتضمن اسماء العناصر الموصلة والعناصر العازلة للكهرباء .وفي 1733,اكتشف الفرنسي شارل دوفاي 1698-1733وجود شحنة كهربائية موجبة واخرى سالبة:ان الشحنتين من طبيعة واحدة تتنابذان, وشحنتين متعارضتين تتجتذبان.
كانت اول بطارية كهربائية هي "قنينة ليد "(وليد هو اسم المدينة الهولندية التي اخترعت فيها).تلك كانت قنينة مليئة بالماء سدادتها الزجاجية يخترقها مسمار يطال السائل.وعن طريق المسمار ,تبث شحنة في الماء المعزول داخل الزجاج.فاذا احدث تماس بين المسمار وموصل اخر تنتج عن ذلك شرارة.
وفي 1752,تمكن الامريكي بنجامين فرنكلين 1706-1790,في وقت كانت خلاله السماء تبرق وترعد,من توجيه البرق في لحظة ما الى قنينة ليد,باستعال طيارة ورقية,مبرهنا بذلك على كون العواصف الرعدية من طبيعة كهربائية.وتوالت التجارب والاكتشافات بسرعة.فصنع الكسندر فولتا اول بطارية كيميائية (حوالي 1800),اذا راكم اسطوانات من فضة واخرى من توتياء ،تفصل بينهما حلقات من ورق مقوى مشرب بالماء المالح.
وفي سنة 1820,ابرز الدنيماركي ويرستد (1777- 1851) ان هناك علاقات وثيقة بين الكهرباء والمغناطيسية. وذلك ما اكده اندري ماري امبير,اذ اوضح ان لقضيب فولاذي ممغنط نفس خصائص الوشيعة المكهربة. وقد اخترع هذا الاخير,"المقياس الغلفاني" لقياس قوة التيار. وفي 1826,فسر غ. س. اوم (1787-1854) ظاهرة ايصال اجسام صلبة للكهرباء,ووضع تعريفا للجهد الكهربائي(=قوة دافعة كهربائية),ومفعوله على الموصلات.
وفي 1864,قدم ماكسويل 1831-1879,في نظريته الكهرطيسية,تركيبا لكل المعارف المتعلقة بالكهرباء. واخيرا,قدم البرت انشتاين تفسيرا لمجمل الظواهر الكهرطيسية في اطار نظريته النسبية.
الطاقة الكهربائيةفي المستقبل!
يعود30%من المنتوج الكهربائي العالمي الى الولايات المتحدة(أي انها تنتج 2356 مليار كيلوواط)وهي تملك المحطة الكهربائية الثانية في العالم من حيث الاهمية(سد"غراند كوليه" طاقته: 9,8 ميغاواط) بعد محطة ايتايبو (البرازيل, البراغواي),التي تشتغل منذ 1982 وتنتج 12,6 ميغاواط.وفي 1987 كان الاتحاد السوفيتي(ولم يكن بعد قد انقسم الى دول عديدة) يحتل المرتبة الثالثة(سعة:1295 مليار كيلوواط).وهناك عدد من الدول يزداد فيها استهلاك الكهرباء بنسبة اكبر من تلك التي يزداد بها في الولايات المتحدة.ومع هذا, يتوقع ان يستغل في هذه الدول ربع المنتوج العالمي ,سنة 2000.
ان التطور التكنولوجي يمكن من سد الحتجات الانية في هذا المضمار.ولكن لن تتفاقم ازمة الطاقة بشكل مقلق قبل القرن الواحد والعشرين.الا ان الوقت والمال اللازمين لتحقيق المشاريع المشار اليها اعلاه يحسبان بالعقود وبالملايير.والكثير من الخبراء في هذا المجال يرون انه من الواجب الشروع في معالجة المشكل الان,قبل ان يفوت الاوان.
الكهرباء احد اكثر مصادر الطاقة وفرة.فهي موجودة في كل شئ.وتمدنا الكهرباء بالحرارة والضوء. وهي التي تسبب القوة المحركة للمحركات التي تسير القاطرات والشاحنات والمعدات الالية.
وبدون الكهرباء لن يكون لدينا راديو او تلفزيون او تلفون .
ما هي الكهرباء؟
الكهرباء هي قوة موجودة في جميع المواد الصلبةوالسائلة والغازية.تتكون المادة من ذرات (اصغر جسيمات يمكن ان ينقسم اليها أي شيء).وتحتوي حبة الرمل الواحدة على الاف الملايين من الذرات .والجزء الخارجي من الذرة يحتوي على جسيم(او اكثر)يسمى الكترونا.اما في داخل الذرة,عند المركز فتوجد نواة صغيرة تتكون من جسيمات تسمى بروتونات ونيوترونات.
الالكترونات والبروتونات :
يفترض ان الالكترونات عليها "شحنة سالبة"وان البروتونات عليها "شحنة موجبة".وفي العادة يتساوى عدد الالكترونات مع عدد البروتونات .لكن في بعض المواد,خصوصا الفلزات ,تكون للذرات الكترونات لها حرية الحركة فيما بين الذرات .
التيار الكهربائي:
ان الكهرباء التي نستخدمها في التسخين والاضاءة والاغراض الاخرى تسمى "تيار كهربيا". يسري التيار الكهربائي في اسلاك الفلز على هيئة الكترونات تتحرك بين ذرات الفلز وكل الكترون له شحنة كهربية.ومع تحرك الاكترونات تتنتقل الشحنات على طول السلك بسرعة عالية جدا.

المولدات الكهربائية

هنالك طريقتان رئيسيتان للحصول على التيار الكهربائي أولهما توليده في بطارية من تفاعلات كيماوية والثانية إنتاجه بالتأثير أو الحث الكهرمغنيطي باستخدام اله تدور ملفا في مجال مغنطيسي (أو تدور مغنطيسا في ملف سلكي )وهذه الإله تسمى مولدا كهربائيا (والصغير منها يسمى أحيانا دينمو) واسهل طريقه لتطبيق هذا المبدأ عمليا هي تدوير ملف سلكي بين قطبين مغنطيس دائم وهذا في الواقع هو ما فعله فإرادي عام1831 وليس من المبالغة القول أن نمط حضارتنا الحالية وطرق المعيشية تعتمد إلى حد بعيد على اكتشافه ذالك فبدون الكهرباء تعدم وسائل الحياة العصرية فلا أناره ولا تدفئه ولا وسائل نقل للملايين بالقطارات الكهربائية ولا مصاعد ولا مكنات للمصانع ولا مئات من الأدوات والاجهزه الكهربائية التي نستخدمها يوميا كان أول مولدات فإرادي نموذج مختبري صغير يدار باليد أما في محطات توليد القدرة الحديثة.
فتدار المولدات بوسائل ميكانكيه وفي المحطات التي تعمل بالفحم أو بالزيت أو الطاقة النواويه تدار المولدات بعنيفات (تربيات)بخارية وتتصل التربيات مناشره بالمولدات وتسنى المجموعة مولدا تربينياوفي المحطات الكهربائية تدوير المولدات.
بالتوربينات المائية ولاعتماد هذه المحطات على القده المائية تشيد في مواقف الشلالات الطبيعية أو متساقط المياه الصنعيه علفى مجاري الانهر .ويبنى لهذا الغرض سد لحصر مياه المسقط وتحويلها في انبوب ضخم لتدير بسقوطها الى المستوى الخفيض تربينا مائيا ومجموعه الموالد التربيني عاى اختلاف انواعها هي وسيله لتحويل الطاقه المكانكيه الى طاقه كهربائيه وقد اسنبط العلم البريطاني (جون) فلنع قاعده تساعد في تحديد اتجاه التيار المستولد في مواصل عندما يحرك في مجال مغنطيسي وتعرف لقاعده اليد اليمنى واذا كان الموصل المدار بهيئه ملف فمن الواضح ان التيار سيغير اتجاهه كل نصف دوره فالتيار الذي ينتجه هذا النوع من المولدات يتغير من الصفر الى الذروه في اتجاه معين ثم ينخفض الى الصفر عندما يتعامد الملف مع المجال ثم يتعكس اتجاه التيار في الملف ويبلغ الدوره في الاتجاه المعاكس قبل ان يعود ثانيه الى الصفر وهذا .التواتر التياري يسنى تيارا مناويا .والتردد هو عدد المرات التي تتكرر فيما مده الدوره في الثانيه .
والتيارات المولده في جميع محطات توليد القدره وهي تيارت متناويه لان هذه التيارت يمكن تغييرهبسهوله محول كهربائية .
في المولدات الصغيرة كدينامو الدراجة مثلا يحصل على مجال المغنطيسي من المغنطيس دائم أما المولدات الضخمة فتستخدم المغانط الكهربائية وتدور داخل الملف السلكي وليس العكس .
والتأثير الحاصل هو نفسه, فالتأثير في هذا الحالة يتولد الملف الثابت (العضو الساكن) بتحريض (آو حث)المجال المغنطيسي المتغير الحاصل في المغنطيسي الدوار (العضو الدوار).
توليد الكهرباء

البطاريات:
للبطارية طرف سالب وطرف موجب، وعندما يوصل سلك بين طرفين تسرى عبره الالكترونات من الطرف السالب الى طرف الموجب
البطارية الجافة :
هي كتلك التي نستخدمها في راديوا الترانزستور او مصباح البطاريه اليدوي ، تتحرر الالكترونات بالتأثر الكيميائي لكلوريد الامونيوم {ملح النشادر}على الزنك 0ومع استخدام البطاريات ستنفذ الكيماويات الموجوده بها حتى يتوقف تحرر الالكترونات 0عندئذ تخمد البطارية ، المركز الحمضي الرصاص: وهو نوع البطاريات المستخدمه فالسيارات ،يحدث التفاعل الكيميائي بين الرصاص والحامض الكبريتيك .هذا النوع من البطاريات يمكن شحنه مرة ثانية ، حيث توصل البطاريه بمصدر للتيار الكهربائي وتعاد الالكترونات مرة اخرى الى حيث كانت من قبل في الذرات
المولدات الكهربائية: تنتج هذه المولدات معظم الطاقه الكهربائية التي تولدها محطات توليد القدره في العالم يعتمد عمل المولدات على العلاقه الوثيقه بين الكهربيه والمغناطيسيه فعندما يتحرك مغناطيس في سلك على شكل ملف فان تياراً كهربياً يستحث (ينتج)في سلك معضم مولدات محطات توليد القدره بها مغناطيسات ضخمه تتحرك في ملفات سمكية النحاس او ملفات تدار حول مغناطيسات وتدار معظم المولدات بواسطة توربينات والتوربينات عباره عن عجلات الى حد كبير طاره السفينه البخاريه وهي تدار بالبخار او الماء او الغاز
نقل الكهرباء : يمكن نقل القدره الكهربيه لمئات الكيلو مترات م محطات توليد القدره الى منازل والمصانع والمدارس وغيرها من المنشآت التي تستخدمها تنتقل الكهرباء عبر الكابلات ممتده عبر الارض او عبر خطوط الضغط العالي الممتده على ارتفاع عال فوق الارض وتمر القدره الكهربيه في طريقها بعدة محولات بعض المحولات يزيد من الضغط (الجهد) الكهربي بحيث لا تفقد كهرباء اثناء الانتقال لمسافات طويله وهناك محولات تخفض الضغط(الجهد)حسب الطلب

ما هي طبيعة الطاقة الكهربائية ؟
ان الالكترونات متحركة وفي المعادن تتحرك بحرية مننقطة الى اخرى وفي احد انابيب التلفزيون تحتاز الفراغ المسافة القصيرة التي تفصل بني الشاشة والاقنية الاكترونيةويملك كل الكترون طاقة اضافية سلبية وتحركها يؤدي الىوجود التيار الكهربائي . وفي غياب القوة فان الاكترونات تبقى جامدة وينعدم وجود
التيار ولتحريك الاكترونات يكفي تشغيلها بواسطة القوة الكهربائية ونعلم جيدا ان طاقتين كهربائيتين متناقضتين ، تجتبذان بعضهما البعض ، والالكترونات تدخل شبكة معدنية يمكن جذبها بواسطة الجانب الايجابي للبطارية .وفي غياب الاحتكاك وخاصة في الفراغ فان الالكتروناتالمتسارعة على طاقة معينة حتى تصل الى وقت تبلغ فيه الانور (القطب الموجب). هذة الطاقة ناتجة من شحن الالكترونات بالطاقة الكربائية ، واللتي تكون وجدتها الفولت بين نقطة الانطلاقونقطة الوصول ،فطاقة الحركة للمتزلج توازي الفرق في طاقة القوة بين نقطة الانطلاق ونقطة الوصول. وعلى سبيل المقارنة فان قوة المولد موازية لارتفاع السد ، والقوة الكهربائية موازية لقوة المياة .ان القدرة التي يستوعبها محرك ما تكون "vi " وال "v "هي الفولتاج ، الذي يغذي المحرك ، وال "i " هي حجم التيار الكهربائي الذي يجتاز بوبينات المحرك .لماذا ينفجر بعض الاجسام ؟
لماذا يحدث انفجار في مكان مغلق اذا دمجنا بين الهواء والنفط وعمدنا الى تمرير شرارة ما ؟ ببساطه لان في الانطلاقلدينا الهيدروكاربور الذي هو النفط ذرات من الكربون مرتبطه بذرات من الهيدروجين . وهكذا تقوم الشرارة بتدمير العلاقات بين الكربون والكربون من جهة ،والكربون والهيدروجين من جهة أخرى لتكوين علاقه كيميائيه جديده مازجةهذه الذرات بأوكسجين الهواء مما يعني الانفجار
هل يمكن استعمال المياه كمحروقات بدلا من النفط ؟
حسب مبدا ان أي اله حرارية لا يمكنها القيام باي عمل الا اذا اقترضت الحرارة من مصدرحار واعادتها الىمصدر بارد ،وفي الواقع ان جزءا واحدا من الحرارة التي تبعثها هذة
المصادر الحارة تتحول الى طاقة ميكانيكية .
اذا من أين تأتي هذه الحرارة ؟
النفط؟في محرك السيارة يأتي المصدر الحار مناحتراق النفط الذي يحتوي فقط على ذرات من الكاربون
والهيدروجين واثناء الحركة تمتزج هذة الذرات مع اوكسجين الهواء لتشكيل جزيئات من ثاني اوكسيد الكربون co2 والمياة h2o وهذة الجزيئات تملك طاقات وصل اكثر اهمية من تلك ا لتي تصل ما بين الكربون والهيدروجين في النفط ،ولشرح ذلك بصورة اخرى فان جزيئات الco2,والh2o والاكثر استقرار من النفط تحتاز بطبيعتها الى طاقه من اجل التكوين فنقول عندها بانها مرتبطة بقوة وعليه فان
جزء من الاساسية لم يعد يستعمل ويتبخر على شكل حرارة وهذا ما نطلق اسم ( احتراق النفط)

ارجو ان يعجبكم
وارجو الرد السريع

عندي بحث تاني عن مصادر الطاقة

بحث عن مصادر الطاقة:
*****************.
المقدمة:
———.
يمكن ان يطلق على عصرنا تسمية عصر الزيوت. النفط لسوء الحظ بعيد عن الكمال. المطر الحامضي، وسخونة الارض وتلوث المدن كلها ناجمة عن النفط. الا ان احد اقارب النفط المعروف، بالغاز الطبيعي، هو بديل جذاب لمصادر الطاقه. تشكل الغاز الطبيعي قبل ملايين السنين عبر احتمالات متعدده، يعتقد البعض انه عبر القرون تراكمت مجهريات عضوية حيوانية ونباتيه على سطح المحيط. وان جزيئات الصخور غطتها تدريجيا،لتشكل ما سمي، بفتحة صخريه. وقد جرت عملية تحلل بطيئه ضمن فتحة الصخر حولت المجريات العضويه الى فحم سائل. والفحم السائل هو مركب تشكل ببطء من الكربون وذرات الهيدروجين. تحتوي بعض الجزيئيات في تركيبتها على اقل من اربعة ذرات فحميه. ويعتبر هذا الهيدرو كاربون، الخفيف جدا، هو العماد الرئيسي للغاز الطبيعي. الميثان هو النوع الافضل، وتتالف جزيئاته من ذرة فحم واحده، لكل اربعه ذرات من الهيدروجين. حين يستخرج من مستودعاته ويتم التخلص من شوائبه، ينقل الغاز الطبيعي الى مناطق التوزيع. ينقل عبر مسافات طويله وهو بشكله السائل ومن خلال بواخر مخصصة للميثان. حين يتم تنزيله، وقبل ان يوزع على المستهلك، يتعرض لسبل علاج متعدده. لاسباب امنيه يتم ضخ كميات بسيطة من محلول كيميائي يحتوي على السولفر الى داخل الغاز. عملية الاضافة هذه تجعل للغاز رائحه، بحيث يمكن التعرف عليه بحال تعرضه لتسرب ما. يعتبر الغاز كالفحم الحجري والزيوت وقود من المستحاث التي لا يمكن تجديدها.

طاقــــــة:
———-.
الطاقة هي المقدرة على القيام بشغل (أى إحداث تغيير) ، وهناك صور عديدة للطاقة، منها الحرارة و الضوء (طاقة كهرومغناطيسية)، و الطاقة الكهربائية.
ضمن الاستخدام الاجتماعي : تطلق كلمة "طاقة" على كل ما يندرج ضمن مصادر الطاقة ، إنتاج الطاقة ، و استهلاكها و أيضا حفظ موارد الطاقة. بما ان جميع الفعاليات الاقتصادية تتطلب مصدرا من مصادر الطاقة ، فإن توافرها و أسعارها هي ضمن الاهتمامات الأساسية و المفتاحية . في السنوات الأخيرة برز استهلاك الطاقة كأحد أهم العوامل المسببة للاحترار العالمي global warming مما جعلها تتحول إلى قضية أساسية في جميع دول العالم .
ضمن سياق العلوم الطبيعية ، الطاقة يمكن ان تاخذ أشكالا متنوعة : طاقة حرارية ، كيميائية ، كهربائية ، إشعاعية ، نووية ، و طاقة كهرومغناطيسية ، و طاقة حركة . هذه الأنواع من الطاقة يمكن تصنيفها بكونها طاقة حركية أو طاقة كامنة ، مع أن بعض أنواع الطاقة تقاوم مثل هذا التصنيف مثلا : الضوء ، في حين أن أنواع أخرى من الطاقة كالحرارة يمكن أن تكون مزيجا من الطاقتين الكامنة و الحركية .
جميع أنواع الطاقة يمكن تحويلها Transformation من شكل لآخر بمساعدة أدوات بسيطة أو تقنيات معقدة : من الطاقة الكيميائية إلى الكهربائية عن طريق الأداة الشائعة البطاريات أو المركمات ، ضمن سياق نظرية النسبية بدمج مجالي المادة و الطاقة معا بحيث أصبح من الممكن ان تتحول الطاقة إلى مادة و بالعكس تحول المادة إلى طاقة : هذا الكشف الجديد عبر عنه أينشتاين بمعادلته الشهيرة E=mc2 . هذا التحول ترجم عمليا عن طريق الحصول على الطاقة بعمليات الانشطار النووي أو الاندماج النووي
مصطلحات الطاقة و تحولاتها مفيدة جدا في شرح العمليات الطبيعية . فحتى الظواهر الطقسية مثل الريح ، و المطر و البرق و الأعاصير tornado تعتبر نتيجة لتحولات الطاقة التي تأتي من الشمس على الأرض . الحياة نفسها تعتبر أحد نتائج تحولات الطاقة : فعن طريق التمثيل الضوئي يتم تحويل طاقة الشمس إلى طاقة كيميائية في النباتات ، يتم لاحقا الاستفادة من هذه الطاقة الكيميائية المختزنة في عمليات الاستقلاب ضمن الكائنات الحية غيرية التغذية .

تحـــــول الطاقة:
—————–.
يمكن تحويل الطاقة من صورة إلى أخرى. فعلى سبيل المثال، يمكن تحويل الطاقة الكيميائية المختزنة في بطارية الجيب إلى ضوء. كمية الطاقة الموجودة في العالم ثابتة على الدوام، فالطاقة لا تفنى ولا تستحدث من العدم (قانون انحفاظ الطاقة ) ، وإنما تتحول من شكل إلى آخر. وعندما يبدو أن الطاقة قد استنفذت، فإنها في حقيقة الأمر تكون قد تحولت إلى صورة أخرى، لهذا نجد أن الطاقة هي قدرة المادة للقيام بالشغل (الحركة) كنتيجة لحركتها أو موضعها بالنسبة للقوي التي تعمل عليها. فالطاقة التي يصاحبها حركة يطلق عليها طاقة حركة ، والطاقة التي لها صلة بالموضع يطلق عليها طاقة الوضع (جهدية أو مخزنة). فالبندول المتأرجح به طاقة جهدية في نقاطه النهائية، وفي كل أوضاعه النهائية له طاقة حركية وطاقة جهدية في أوضاعه المختلفة.
الطاقة توجد في عدة أشكال كالطاقة الميكانيكية ، الحرارية ، الديناميكية الحرارية، الكيميائية، الكهربائية، الإشعاعية، والذرية. وكل أشكال هذه الطاقات قابلة للتحويل الداخلي بواسطة طرق مناسبة. والطعام الذي نتاوله، به طاقة كيميائية يخزنها الجسم ويطلقها عندما نعمل أو نبذل مجهوداً.

أنــــواع الطاقة:
—————-.
تعتبر الطاقة الحيوانية أول طاقة شغل استخدمها الإنسان في فجر الحضارة عندما استخدم الحيوانات الأليفة في أعماله ثم شرع واستغل قوة الرياح في تسيير قواربه لآفاق بعيدة. واستغل هذه الطاقة مع نمو حضارته، واستخدمها كطاقة ميكانيكية في إدارة طواحين الهواء وفي إدارة عجلات ماكينات الطحن ومناشير الخشب ومضخات رفع الماء من الآبار وغيرها. وهذا ما عرف بالطاقة الميكانيكية.
قوة الحيوانات نجدها مستمدة من الطاقة الكيميائية الموجودة في الطعام بعد هضمه في الإنسان والحيوان. والطاقة الكيميائية نجدها في الخشب الذي كان يستعمل منذ القدم في الطبخ والدفء. وفي بداية الثورة الصناعية استخدمت القوة المائية كطاقة تشغيلية ( شغل ) بواسطة نظم سيور وبكر وتروس لإدارة العديد من الماكينات.
نجد الطاقة الحرارية في المحركات البخارية التي تحول الطاقة الكيميائية للوقود إلى طاقة ميكانيكية. فالآلة البخارية يطلق عليها آلة احتراق خارجي، لأن الوقود يحرق خارج المحرك لتوليد البخار الذي يدير المحرك . لكن في القرن 19 إخترعت محرك الإحتراق الداخلي ، مستخدما وقودا يحترق داخل الآلة حسب نظام غرف الإحتراق الداخلي المباشر بها، لتصبح مصدرا للطاقة الميكانيكية التي أستغلت في عدة أغراض كتسيير السفن والعربات والقطارات.
في القرن 19 ظهر مصدر آخر للطاقة، لايحتاج لإحتراق الوقود، وهو الطاقة الكهربائية المتولدة من الدينامو مولد كهربائي . أصبحت هذه المولدات تحول الطاقة الميكانيكية لطاقة كهربائية التي أمكن نقلها إلي أماكن بعيدة عبر الأسلاك ، مما جعلها تنتشر، حتى أصبحت طاقة العصر الحديث ولاسيما وأنها متعددة الأغراض ، بعدما أمكن تحويلها لضوء و حرارة وطاقة ميكانيكية، بتشغيلها محركات الآلات والأجهزة الكهربائية. تعتبر طاقة نظيفة إلى حد ما.
ثم ظهرت الطاقة النووية التي استخدمت في المفاعلات النووية ، حيث يجري الإنشطار النووي الذي يولد حرارة هائلة تولد البخار الذي يدير المولدات الكهربائية أو محركات السفن والغواصات. لكن مشكلة هذه المفاعلات النووية تكمن في نفاياتها المشعة، واحتمال حدوث تسرب إشعاعي أو إنفجار المفاعل، كما حدث في مفاعل تشيرنوبل الشهير.
الطاقة الغير متجددة نحصل عليها من باطن الأرض كسائل كما في النفط ، وكغاز كما في الغاز الطبيعي ، أو كمادة صلبة كما في الفحم الحجري . وهي غير متجددة لأنه لايمكن صنعها ثانية أو استعواضها مجددا في زمن قصير، عكس الطاقة المتجددة . مصادر الطاقة المتجددة نجدها في طاقة الكتلة الحيوية التي تستمد من مادة عضوية كإحراق النباتات وعظام الحيوانات وروث البهائم والمخلفات الزراعية. فعندما نستخدم الخشب أو أغصان الأشجار أو روث البهائم في اشتعال الدفايات أو الأفران، فهذا معناه أننا نستعمل وقود الكتلة الحيوية التي تستغل كمادة عضوية من النباتات ونفايات الزراعة أو الخشب أو مخلفات الحيوانات. وفي الولايات المتحدة تستغل طاقة الكتلة الحيوية في توليد 3% من مجمل الطاقة لديها لتوليد 10 آلاف ميجا وات من القدرة الكهربائية.
وتستغل طاقة الحرارة الأرضية لتوليد الكهرباء والتسخين. حاليا نصف الطاقة المتجددة في الولايات المتحدة الأمريكية تأتي من قوة دفع المياه التي تدير التوربينات، والتي تسيّر االمحركات لتوليد الكهرباء، كما يحدث في مصر في السد العالي. وفي أمريكا تمثل كهرباء الطاقة المائية 12% من جملة الكهرباء. و يمكن مضاعفتها إلي 72 ألف ميجاوات.
هناك أيضا طاقة قوة الرياح حيث أن شفرات (ألواح) كبيرة تدور بالهواء فوق الأبراج بحركة مروحية، ومثبت بها مولدات كهرباء. كانت قوة الرياح تستغل في إدارة طواحين الهواء ومضخات رفع المياه، كما إتبع في هولندا عندما نزح الهولنديون مساحات مائية من البحر لتوسيع الرقعة الزراعية عندهم. سبب عدم إنتشارها في العالم أصواتها المزعجة وقتلها للطيور التي ترتطم بشفراتها السريعة، وعدم توفر الرياح في معظم المناطق بشكل مناسب.
أيضا في خلايا الطاقة التي هي خلايا وقود الهيدروجين تنتج الكهرباء من خلال تفاعل كهربائي كيميائي باستخدام الهيدروجين والأوكسجين.

مصـــــادر الطاقة الطبيعية.
بتــــرول:
———.
البترول عبارة عن سائل كثيف، قابل للاشتعال، بني غامق أو بني مخضر، يوجد في الطبقة العليا من القشرة الأرضية. وأحيانا يسمى نافثا، من اللغة الفارسية ("نافت" أو "نافاتا" والتي تعني قابليته للسريان). وهو يتكون من خليط معقد من الهيدروكربونات، وخاصة من سلسلة ألكان، ولكنه يختلف في مظهره وتركيبه ونقاوته بشدة من مكان لأخر. وهو مصدر من مصادر الطاقة الأولية الهام للغاية (حسب إحصائيات الطاقة في العالم). البترول هو المادة الخام لعديد من المنتجات الكيميائية، بما فيها الأسمدة، مبيدات الحشرات، اللدائن.

وقــــــود:
———-.
الوقود له أنواع مختلفة من أهمها الوقود الحفري وهو الذي يشمل كل من النفط والفحم والغاز، والذي أستخدم بإسراف منذ القرن الماضي ولا يزال يستخدم بنفس الإسراف مع ارتفاع أسعاره يوما بعد يوم، مع أضراره الشديدة للبيئة. ومثله وقود السجيل وهو مثل النفط يكون مخلوط مع الرمال.
من أنواع الوقود الأخرى هو الوقود الخشبي والذي يغطي استخدامه حوالي 6% من الطاقة الأولية العالمية، وهناك الوقود المستخرج من النفايات الحيوانية أو المياه الثقيلة للمجاري، حيث بالمستطاع استخدام هذه النفايات في توليد الطاقة بالاعتماد عليها بعد عمليات التخمير، وتستخدم في العديد من دول العالم معالجة المياه الثقيلة للاستفادة من الغازات المنبعثة لأغراض توفير الطاقة.
من الطرق الحديثة والنظيفة في توفير الوقود النظيف يمكن أن يكون من نباتات الأشجار سريعة النمو، أو بعض الحبوب أو الزيوت النباتية أو المخلفات الزراعية أو بقايا قصب سكر، أمكن تحويل بعض منتجات السكر إلى كحول لاستخدامه كوقود للسيارات وكذلك زيت النخيل. يتميز هذا النوع من الوقود بأنه يقلل من التلوث، حيث لا حاجة هناك لاستعمال الرصاص في مثل هذا النوع من الوقود لرفع أوكتان الوقود كما هو الحال في البنزين المستحصل عليه من النفط الأحفوري، ومن ثم فإنه بنزين خال من الرصاص.
هناك الوقود النووي وتحطه الكثير من المشاكل والقوانين الضابطة والتي قد لا تخلو من ازدواجية في المعايير وإجحاف بالسماح لاستخدامها على البعض، إضافة لخطورة استخدامها وتأثيرها السيئ على البيئة.

طاقــــة شــمسية:
——————–.
الطاقة الشمسية هي الطاقة الأم فوق كوكبنا، حيث تنبعث من أشعتها كل الطاقات المذكورة سابقاً لأنها تسير كل ماكينات وآلية الأرض بتسخين الجو المحيط واليابسة وتولد الرياح وتصريفها، وتدفع دورة تدوير المياه، وتدفيء المحيطات، وتنمي النباتات وتطعم الحيوانات. ومع الزمن تكون الوقود الإحفوري في باطن الأرض. وهذه الطاقة يمكن تحويلها مباشرة أو بطرق غير مباشرة إلى حرارة وبرودة وكهرباء وقوة محركة. تعتبر أشعة الشمس أشعة كهرومغناطيسية، و طيفها المرئي يشكل 49% منها، والغير مرئي منها يسمى بالأشعة الفوق البنفسجية ، ويشكل 2%، و الأشعة تحت الحمراء 49%.
الطاقة الشمسية تختلف حسب حركتها و بعدها عن الأرض، فتختلف كثافة أشعة الشمس وشدتها فوق خريطة الأرض حسب فصول السنة فوق نصفي الكرة الأرضية و بعدها عن الأرض و ميولها و وضعها فوق المواقع الجغرافية طوال النهار أو خلال السنة، وحسب كثافة السحب التي تحجبها، لأنها تقلل أو تتحكم في كمية الأشعة التي تصل لليابسة، عكس السماء الصحوة الخالية من السحب أو الأدخنة. وأشعة الشمس تسقط علي الجدران والنوافذ واليابسة والبنايات والمياه، وتمتص الأشعة وتخزنها في كتلة (مادة) حرارية Thermal mass. هذه الحرارة المخزونة تشع بعد ذلك داخل المباني. تعتبر هذه الكتلة الحرارية نظام تسخين شمسي يقوم بنفس وظيفة البطاريات في نظام كهربائي شمسي (الفولتية الضوئية). فكلاهما يختزن حرارة الشمس لتستعمل فيما بعد.
والمهم معرفة أن الأسطح الغامقة تمتص الحرارة ولا تعكسها كثيراً، لهذا تسخن. عكس الأسطح الفاتحة التي تعكس حرارة الشمس، لهذا لا تسخن. والحرارة تنتقل بثلاث طرق ،إما بالتوصيل conduction من خلال مواد صلبة، أو بالحمل convection من خلال الغازات أو السوائل، أو بالإشعاع radiation. من هنا نجد الحاجة لإنتقال الحرارة بصفة عامة لنوعية المادة الحرارية التي ستختزنه،, لتوفير الطاقة و تكاليفها. لهذا توجد عدة مباديء يتبعها المصممون لمشروعات الطاقة الشمسية، من بينها قدرة المواد الحرارية المختارة لتجميع وتخزين الطاقة الشمسية حتى في تصميم المباني واختيار مواد بنائها حسب مناطقها المناخية سواء في المناطق الحارة أو المعتادة أو الباردة. كما يكونون علي بينة بمساقط الشمس علي المبني والبيئة من حوله كقربه من المياه واتجاه الريح والخضرة ونوع التربة، والكتلة الحرارية التي تشمل الأسقف والجدران وخزانات الماء. كل هذه الإعتبارات لها أهميتها في إمتصاص الحرارة أثناء النهار وتسربها أثناء الليل.

أنــــواع أخرى للطاقة:
———————–.
هناك مصادر نظيفة للطاقة يمكن استخدامها كوقود بديل ومنها:
• طاقة المد والجزر.
• طاقة الحرارة الأرضية.
• طاقة امواج البحر.
• طاقة نووية.
• طاقة شمسية.
• طاقة الرياح.
• طاقة حركة
• وحدة طاقة .

وحــدات الطـاقة:
—————–.
كما توجد أنواع متعددة للطاقة ، مثل الطاقة الحرارية و الطاقة الكهربائية و والطاقة الميكانيكية فلا عجب أنه توجد وحدات عديدة أيضا لقياس الطاقة بحيث تناسب الوحدة نوع الطاقة تحت النظر . ومع ذلك فيمكن تحويل تلك الوحدات فيما بينها مثلما يمكن تحويل الطاقة الحرارية مثلا إلى طاقة ميكانيكية. ونجلب هنا أهم وحدات الطاقة ، ونذكر بوجود قائمة وحدة طاقة:
1 جول = 1 كيلوجرام . متر2 . ثانية −2
1 إرج = 1 جرام . سم2 . ثانية −2
1 جول = 107 إرج
1 كيلوواط ساعة = 3,6 . 106 جول
1 حصان = 2,68 . 106 جول
كما توجد وحدة صغيرة تناسب التعامل مع الجسيمات الأولية و الذرة وتستخدم في الفيزياء النووية ، ذلك لأن الجول وكيلوواط ساعة وحدات كبيرة لهذا المجال. والوحدة التي يستخدمها الفيزيائيون للجسيمات الأولية هي الإلكترون فولت ومقدارها :
1 إلكترون فولت = 1.6023×10−19 جول
كتلة البروتون = 931 مليون إلكترون فولت
وهذه الأخيرة يمكن حسابها أيضا بالجول أو بالكيلوجرام . متر2 . ثانية −2.

مصــــادر الطاقة:
—————–.
ان أهم مصادر الطاقة المستخدمة حالياً، وتلك المتوقع أن يكون لها شأن في توفير الطاقة للبشرية، هي: 1- الوقود الأحفوري: ويتمثل في الفحم والنفط والغاز الطبيعي، ويختزن هذا الوقود (طاقة كيميائية) يمكن الاستفادة منها عند حرقه، والوقود الأحفوري هو مصدر الطاقة الرئيس حيث يسهم بما يربو على 90% من الطاقة المستخدمة اليوم، ولأنه مصــــدر قابل للنضوب، وبسبب مشكلات التلوث البيئي، فإن البحث حثيث لتوفير وتطوير مصادر أخرى للطاقة.
2- المصادر الميكانيكية: وهي مساقط المياه والسدود وحركة (المدّ والجزر) وطاقة الرياح، ولذا تقام محطات (توليد الكهرباء) عند السدود والشلالات ومناطق المد العالي وربوع الرياح الشديدة لاستغلال قوة الدفع الميكانيكية في تشغيل التوربينات.
3 – الطاقة الشمسية: يستفاد منها عبر التسخين المباشر في عمليات تسخين المياه والتدفئة والطهي، كما يمكن تحويلها مباشرة إلى (طاقة كهربائية) بواسطة (الخلايا الشمسية).
4- الطاقة الحرارية الجوفية حيث يستفاد من ارتفاع درجة الحرارة في جوف الأرض، وفي بعض المناطق تكون هذه (الطاقة الجوفية) قريبة من سطح الأرض فتوجد بالتالي الينابيع الحارة، ففي أيسلندة ـ مثلاً – تنتشر هذه الينابيع، ويُستفاد منها لأغراض التدفئة والتسخين.
5- الكتل الحيوية (البيوماس): وهي المخلفات الحيو، وهذا التصنيف يشمل: انية والزراعية التي يتم تخميرها في حفر خاصة ليتصاعد منها غاز الميثان، وهو غاز قابل للاشتعال.
6- غاز الهيدروجين: يمثّل نوعاً مهماً من أنواع الوقود، وهو مرشح لأن يكون له دور كبير في تأمين الطاقة في المستقبل، وقد ظهرت سيارات تعمل على غاز الهيدروجين، وأبرز تطبيقاته الاســـتفادة منه في (خلايا الوقود)، وهي خلايا واعـــدة بتطبيقات واسعة في المستقبل، ويتم توليد الكهرباء داخلها مباشرة بتمرير الهيدروجين والهواء بها، وعبــر اتحاد الهيـــــدروجين والأوكسجين نحصل على (طاقة كهربـــائية)، وأما مخلــــفات هذه العملية فهي الماء فقـــــط، أي إن (خـــــلايا الوقود) لا تسـهم في تلويث البيئة.
7- الطاقة النووية: تنتج عن (الانشطار النووي) في المفاعلات النــووية، ويُستفاد منها في تسيير الســــفن والغـواصات وتوليد (الطاقة الكهربائية)، وأبرز سلبياتها (النفايات المشعة) النــــاتجة، ومشكلة التخلص منها، وضوابط الســــلامة العالية اللازمة لمنع انفجار المفاعل، أو تسرّب الإشعاعات منه. وهناك تصنيف للطاقة ومصادرها يقوم على مدى إمكانية تجدد تلك الطاقة واستمراريتها 1- الطاقة التقليدية أو المستنفذة: وتشمل الفحم والبترول والمعادن والغاز الطبيعي والمواد الكيميائية، وهي مستنفذة لأنها لا يمكن صنعها ثانية أو تعويضها مجدداً في زمن قصير.
2- الطاقة المتجددة أو النظيفة أو البديلة: وتشمل طاقة الرياح والهواء والطاقة الشمسية وطاقة المياه أو الأمواج والطاقة الجوفية في باطن الأرض وطاقة الكتلة الحيوية، وهي طاقات لا تنضب.
نص مائل==الواقع الحالي لاستخدام الطاقة :==
تعتمـد المجتمعات المتقدمة على مصادر الطاقة المختلفة في كافة مرافق الحياة. وغالبية المصادر المستخدمة حالياً هي مصادر الوقود الأحفوري . وقد كانت النسـب المئـوية لاسـتهلاك مصـادر الطـاقة المختلـفة فـي عــام 1992 (الشكل 1-1) كما يلي : النفط 33% ، والفحم 22.8% ، والغاز 18.8% ، ومصادر الكتلة الحيوية 13.8% ، والمحطات المائية 5.9% ، والمحطات التي تعمل بالطاقة النووية 5.6% .

الجدول (1-1) يبين كمية الطاقة المستهلكة خلال الأعوام من 1990 وإلى غاية 1998 لكل من الدول العربية وبقية الدول النامية والدول المتقدمة والمجموع العالمي للاستهلاك . ويلاحظ من الجدول أن استهلاك الدول العربية عام 1998 كان حوالي 3.6% من مجموع الاستهلاك العالمي وذلك لكونها دولاً نامية وغير صناعية ، بينما وصل الاستهلاك في أمريكا الشمالية (الولايات المتحدة ، وكندا ، والمكسيك) إلى حوالي 30% . وقد كان الاستهلاك في الولايات المتحدة ، وهي تمثل 5% من مجموع سكان العالم ، حوالي 25% من الاستهلاك العالمي . ويوضح الشكل (2-1) معدل الاستهلاك السنوي للشخص الواحد في مختلف مناطق العالم ، والمعدل العالمي السنوي لاستهلاك الفرد .

ويتم حالياً استخدام مصادر الطاقة في أربعة مجالات رئيسية هي : النقل ، والصناعة ، والسكن (دور منفردة وعمارات سكنية) ، والقطاع التجاري (مكاتب، مدارس ، مخازن …. الخ) . وإنّ جزءاً كبيراً من الطاقة المستهلكة يُستخدم كحرارة وليس لإنتاج شغل ، ويُمثل نسبة مقدارها حوالي 50% من الطاقة المستهلكة كخسائر حرارية ، وأكثر ما يحدث ذلك عند محطات توليد الطاقة الكهربائية حيث تساوي نسبة الضياع على شكل حرارة 64% من الطاقة المستهلكة (الداخلة) مقابل 36% من الطاقة الكهربائية المنتجة أو المفيدة أي أن الكفاءة تساوي 36% فقط .
مصـــــادر الطاقة التقليدية
لفهم الطاقة يجب معرفة مصادرها ، وحدودها ، واستخداماتها . ولتكوين سياسة جيدة وفاعلة تجاه الطاقة يجب أن نعرف كمية مصادر الطاقة ومدى ديمومتها واستمراريتها . والإجابة عن مثل هذه الأسئلة ليست سهلة لأنها تعتمد على التقنيات المستقبلية لاستخراج هذه المصادر ، وأسعار الطاقة ، ونمو الاستهلاك .
إن تقدير كميات الفحم أسهل من تقدير كميات النفط والغاز وذلك لكون حقول النفط والغاز موجودة في مناطق متباعدة وعلى أعماق تتراوح من مئات الكيلومترات إلى عدة كيلومترات ، ولا يمكن معرفة مكانها إلاّ بطرق استكشاف مكلفة جداً . والجدول (2-1) والشكل (4-1) يبينان الاحتياطي النفطي العالمي واحتياطي دول المنطقة العربية على الترتيب ، إذ يتبين واضحاً أن احتياطي الدول العربية من النفط كان 643.6 مليار برميل في عام 1998 ، وهذا يمثل أكثر من 63% من الاحتياطي العالمي ، ومنه يمكن القول أن الدول العربية وخاصة دول الخليج العربي ستبقى المصدر الرئيسي لتمويل الطاقة في العالم .

أما بالنسبة إلى الغاز الطبيعي فالوضع مختلف . ففي الوقت الحاضر بلغ احتياطي الدول العربية في عام 1998 ، وكما هو موضح بالجدول (3-1) والشكل (5-1) ، ما مقداره 32708 مليار متر مكعب ، وهو ما يعادل 22% من الاحتياطي العالمي .

إن إنتاج الدول العربية من إنتاج الطاقة الكلي في عام 1998 ، وكما هو مبين بالجدول (4-1) والشكل (6-1) ، كان 30.6 مليون برميل مكافئ نفط يومياً ، وهو يمثل نسبة 17.6% من مجموع الإنتاج العالمي . وهذه النسبة ستزداد مع مرور الوقت ، وسيزداد الاعتماد العالمي على مصادر الطاقة العربية ، حسب ما هو متوقع ، عند النظر إلى كمية الاحتياطات الضخمة الموجودة في المنطقة العربية من هذه المصادر .

استمــــرارية توفر مصادر الطاقة :
————————————.
إن وضع الطاقة في الوقت الحاضر يختلف عما كان عليه في العقدين الماضيين . فانخفاض الأسعار ، وتوفر كميات كبيرة من الوقود في الأسواق أدّيا إلى الإسراف في استهلاك الطاقة ، وعدم الالتزام بترشيده ، وعدم البحث عن مصادر جديدة .
إن كمية الطاقة الموجودة في باطن الأرض محدودة ، ومن غير الممكن بقاؤها لفترة طويلة جداً . ولكن تقدير فترة بقائها ليس سهل أيضاً . فاحتياطي العالم من النفط ارتفع من 540 بليون برميل عام 1969 ميلادية إلى أكثر من 1000 بليون برميل في الوقت الحاضر . وهذا الارتفاع في الاحتياطي لا يعني أنه غير محدود . فلقد تم مسح مكامن الأرض بصورة مفصلة من قِبل شركات النفط واكتشفت الحقول السهلة والحقول ذات تكلفة الإنتاج القليلة . وهنالك حقول صعبة تحتاج إلى حفر عميق أو ذات طبيعة استخراج صعبة جداً وتحتاج إلى مواد وجهود كبيرة ، وقسم منها يحتاج إلى طاقة وأحياناً تكون الطاقة اللازمة للاستخراج مساوية أو أكثر من الطاقة المستخرجة. وفي هذه الحالات سيكون استخراج الطاقة بدون فائــدة .
من الأرقام المفيدة والمهمة جداً في هذا المجال نسبة الاحتياطي إلى المنتج . فإذا تم تقسيم الاحتياطي المضمون في نهاية كل سنة على الإنتاج في تلك السنة فإن الناتج سيمثل طول عمر الاحتياطي . وهذا الرقم سيدلّ على توفر الطاقة في منطقة معينة من العالم . فمثلاً لقد كان هذا الرقم في عام 1992 هو 10 أعوام لنفط غربي أوربا ، و 25 عاماً لأمريكا الشمالية بينما كان أكثر من 100 عام لمنطقة الشرق الأوسط . ويمتلك الشرق الأوسط أكثر من 60% من احتياطي العالم من النفط ، وتمتلك المملكة العربية السعودية وحدها أكثر من 25% من الاحتياطي .
ويختلف الأمر بالنسبة إلى الغاز الطبيعي . فإن الاحتياطي الأكبر يقع في دول الاتحاد السوفيتي السابق إذ تحتوي هذه المنطقة على أكثر من 40% من احتياطي العالم ، وتحتوي دول الأوبك على حوالي 40% أيضاً من الغاز. أما الباقي فإنه يتوزع على أنحاء مختلفة من العالم . وإن نسبة الاحتياطي إلى المنتج في الوقت الراهن بالنسبة إلى الغاز الطبيعي هي حوالي 65 عاماً .
أما بالنسبة إلى الفحم الحجري فإن الاحتياطي العالمي كبير وموزع على مناطق واسعة ومختلفة . ويبلغ مقدار الاحتياطي إلى المنتج بالنسبة إلى الفحم أكثر من 200 عام ، ولكن كما نعلم فإن للفحم مساوئ كثيرة ، حتى وإن قورنت بالنفط والغاز . وأهم هذه المساوئ هو انبعاث ثاني أكسيد الكربون وأكسيد الكبريت وأكسيد النيتروجين . وبالرغم من إمكانية تحويل الفحم إلى سائل لغرض تقليل مشاكله البيئية فإن سعر كلفة التحويل سيمثل عقبة لكونه عالياً .
مما تقدم أعلاه يتبين أنه إذا كان هدفنا هو تقليل كمية الوقود التقليدي الذي يتم حرقه لغرض إطالة عمره ولتقليل المخاطر البيئية التي يسببها فإنه يتوجب علينا البحث عن مصادر جديدة غير ناضبة وصديقة للبيئة ، وتطوير كفاءتها ، وتقليل أسعار منظوماتها .

الغاز الطبيعي:
—————.
هو افضل ما يمكن ان يحل محل النفط، لانه اقل تلويثا للجو من البنزين. يذكر هنا ان ان المنتوج الرئيسي لوقود البنزين هو ثاني اكسيد الكربون. مع انه غير ضار بالصحه، الى ان ثاني اكسيد الكربون يحجب اشعة ما تحت الحمراء الشمسيه، كما يحجب الحرارة التي يعكسها سطح الارض ليلا. عادة ما تكون القدرة على الاحتفاظ بالسخونة مفيده. منذ بداية العصر الصناعي،بدأ مستوى ثاني اكسيد الكربون يتنامى الى حدود تنذر بالخطر، ويعود السبب في ذلك الى المحركات التي تعتمد على البنزين، اذ يؤكد الخبراء ان هذه العملية ستخل بجو كوكب الارض. يترك البنزين تاثيرا سلبيا اخر على البيئه. ذلك ان احتراقها لا يتم في المحركات بالكامل، فينجم عنها الغبار، وكمية من الهيدروكربون الغير محروق، الى جانب مركبات وسطيه كما هو حال المونواكسيد واكسيد النيتروس. مع ان حياتها تكون قصيرة في الغالب، الا ان هذه العناصر تعتبر سامه. كما انها تتدنى تحت تأثير اشعة الشمس. ينجم عن ذلك في المدن الكبرى ما يعرف بالسموغ، وهو مزيج من الدخان والضباب الذي يتسبب بامراض الرئة والاورام الخبيثه. يحتوي البنزين ايضا على السولفر الممزوج بذرات الاكسجين والهيدروجين. ذرات السولفير تنتج ثاني اكسيد السولفر، وهو غاز سام يشكل الحوامض ايضا. تلوث الهواء هو السبب الرئيسي للمطر الحامضي، ما يؤثر سلبا على احوال الطقس في مختلف انحاء العالم. مقارنة مع البنزين، للغاز الطبيعي فوائد قيمة من حيث البيئه. فهو يحترق بشكل اكمل من البنزين، ولا يخلف الغبار. رغم ان بعض المركبات الوسيطة تنجم عنه، كما هو حال الهيدرو كاربون الغير محترق، ونيترات الاكسيد، ومونواكسيد الكربون. لكل هذا لا يساهم الغاز الطبيعي كثيرا في سموغ المدن.

على خلاف البنزين، حين يتخلص الغاز الطبيعي من شوائبه، لا يعد يحتوي على السولفير. ولا ينجم عن حرقه ثاني اكسيد السولفير الضار جدا بالصحة وفي البيئة ايضا. لا شك ان الغاز الطبيعي يؤدي الى تسخين سطح الارض ، وذلك لامتصاص الحرارة عبر الغازات الجويه. الى جانب ان حرقها يؤدي الى انتاج ربع ثاني اكسيد الكربون الذي ينجم عن البنزين، لدى مثانتها الغير محترقه قدرة اكبر على امتصاص اشعة الشمس ما تحت الحمراء. على اي حال نسبة قليلة من كمية الميثانه المنتشره تصدر عن الغاز الطبيعي.

ينجم انتشار الميثانه بشكل رئيسي من اتلاف المواد العطوية في النفايات، ومن تربية الحيوانات، خصوصا مما يخرج عن المواشي من اوساخ. ولم تحدد بعد اهمية التقليل من انتشار الميثانه. وما زال الخبراء يرون ان مساهمتها اقل في عملية تسخين الارض مما يفعله ثاني اكسيد الكربون، خصوصا وان الغاز يطلق سدس كمية المثانه المنتشره في الهواء كل عام. لاستخدام الغاز الطبيعي كوقود للمحركات، لا يتطلب الامر سوى تعزيز السيارة بمدخل له، ومستوعب خاص بالغاز. ونظام تعبئة الغاز الطبيعي اصبح متبعا في عدد من بلدان العالم. يتم ضغط الغاز الطبيعي، وتخزينه في مستوعبات، ويتخدم انبوب لين لتعبئة السياره، كما يحدث في اي محطة وقود عاديه. المحرك الذي يتم تعديله لحرق الغاز الطبيعي، يعمل بقوة اقل من المحرك العادي بما نسبته عشره بالمئه. الا ان السيارات التي تعتمد على الغاز الطبيعي تتمتع بحرية موازية للتنقل والحركة كالبنزين، حتى انها تتمتع بقدرة اكبر على المناوره.

قد لا يكون الغاز الطبيعي هو الحل لازمة الطاقة ومشاكل البيئه، ولكن من بين غيره، يعتبر الاقل تلوثا،. لهذا فهو قادر على ان يحل تدريجيا محل مشتقات النفط. الوقود الطبيعي كما هو حال الفحم الحجري والغاز الطبيعي والنفط، تستخرج بالكامل من باطن الارض. المحيط يحتوي ايضا على ثروة من الطاقه، يمكن للمد والجزر ان ينتجان كميات كبيرة من الكهرباء. انتاج الطاقة في هذه الايام يسير متوازيا مع حماية البيئه. بفضل المد والجزر، يمكن انتاج كميات كبيرة من الكهرباء دو الاضرار بالبيئه. والحقيقة ان المد والجزر يدلنا على مصدر لا ينضب للطاقة، وهو حميم جدا. ينجم المد والجزر عن الجاذبية التي يمارسها القمر على الارض. قوة الجاذبية هذه، تؤدي الى اندفاع مياه المحيطات نحو القمر. انسحاب المياه اكبر على جهة الارض، المواجهة للقمر، ولكنه يحدث ايضا على الجانب الاخر من الارض، بين منطقتي المد هاتين، تجد منطقة من الجزر ايضا. نتيجة دوران الارض، مستوى البحر في اي بقعة من الكوكب يرتفع وينخفض بالتناوب مرتين في اليوم. مع استثناءات قليله كل البحار تتعرض لحالتي مد وجزر يوميا. قوة المد والجزر هذه تقدر عالميا بثلاثة بلايين كيلو وات. الا انه لا يمكن تسخير كل هذه القوة الهائله.

هناك ما يقارب الاثني عشرة محطة في العالم، قابلة لانتاج الطاقة في العالم. لان صناعة هذه المحطات يحتاج الى وجود ظاهرة ضخمه للمد والجزر. على المستوى بين المد والجزر ان يتعدى العشرة امتار على الاقل، اضف الى ان المحطة يجب ان تؤدي الى مستوعب هائل، قدر الامكان. لهذا يجب بناؤه في خليح، او عند مصب نهر. على الحاجز او السد الذي تبنى محطة الطاقة فوقه، يجب يفصل الخليج او مصب النهر عن البحر، فينشأ المستوعب. كل ما يجب ان يتم لانتاج الطاقه، يكمن في تعدد مستويات الماء بين البحر والمستوعب. تتجسد الخطوة الاولى باملاء المستوعب. المد القادم يكفي لتعبئة المستوعب، يتم اغلاق الابواب في حالة المد، حين يكون مستوى البحر والمستوعب متساويا، ولا يتم فتحها الا عند انتهاء حالة الجزر. عند انسحاب الماء، يكون المستوعب في اعلى مستوياته. عندما يصبح الاختلاف بين مستوى البحر والمستوعب كافيا، تشغل الماء مراوح المضخات. كما تفعل اشارة توليد الكهرباء، تصنع المضخة من المعدن، وتوضع في قناة او ممر مائي محكم. تتحرك المضخة بواسطة مروحة باربع شفرات تولد الطاقة من تيارات الماء. ويقوم فريق مختص باشعال المردد الذي يولد الكهرباْء. في المرحلة الاخيره يتم نقل الكهرباء من خلال محولات خاصه تحملها الى مركز توزيع الطاقة الكهربائيه. كمية الطاقة التي يتم توليدها يعتمد على قوة المد والجزر، وعلى كمية المياه التي يتم تخزينها في المستوعبات. يمكن للمضخات ان تعمل على كلا الاتجاهين. حتى انها يمكن ان تعمل اثناء حركة المد، وحين تتجمع المياه في المستوعبات مياه البحر تجعل الشفرات تتحرك في الاتجاه المعاكس. بفضل هذه العمليه يمكن ان يتم انتاج الطاقة بنسبة سبعين في المئة من المرات. يمكن استخدام المضخات ايضا لرفع مستوى المياه في المستوعبات الى ما هو اعلى من مستوى البحر. حين يكون ذلك ممكنا، وخصوصا عندما يقل الطلب على استهلاك الطاقة، وتحديدا في فترة الليل. يتم تفريغ المياه بعد ذلك الى البحر، حين يزداد الطلب على الكهرباء.

يعتمد توليد الطاقة من المد والجزر على الحركة الثابتة والطبيعية لهذه الظاهره، وهناك محاولات عده تسعى لرفع مستوى الانتاج ليغطي مستوى الطلب. هناك برامج تنفذ اسبوعيا للقيام بذلك. تأخذ هذه البرامج بالاعتبار الاستهلاك السابق، ودورة المد والجزر، التي يتم حسابها عادة بوقت مسبق. يتم برمجة فتح القنوات وتشغيل المضخات بحيث تضمن اقصى قدرات المحطة على التوليد. احدى فوائد محطات التوليد من المد والجزر، حقيقة انها تنتج كميات هائله من الطاقه دون ان تلوث البيئه. لبناء اول محطة توليد تعتمد على المد والجزر في فرنسا، تم استقطاع المستوعب من البحر. يمكن ان يتم التخلص من الاعتماد على هذه التقنية في المستقبل، وذلك نتيجة الصدمة التي تسببها في البداية لطبيعة المنطقه، ذلك انها تبتر المد والجزر نهائيا.

على مدار السنوات الاولى، لم تبقى على قيد الحياة سوى الانواع الاقوى من الاسماك، الا ان الخبراء لاحظوا انه مع مر الزمن، بدأت الطبيعة تستعيد مكانتها الكامله. اما اليوم فثروات البحر في المستوعبات اكبر من الماضي، تتمتع انواع جديده من الاسماك اليوم فيما يشبه الانواع المختلفة والمتعددة من الغذاء. وجاءت كميات من الطيورالى شواطيء مسكونه، فقد عاد التوازن الطبيعي، الى ما كان عليه. النباتات ايضا عج بالطاقه، اعتماد الخشب للتدفئة هو اسلوب تم اتباعه في القدم، ولكنه يؤدي الى ازالة الغابات. لكن تأكيدات الخبراء توضح ان عددا من النباتات يمكن ان تتحول الى مصادر متجددة للطاقه، لا تؤدي لتلوث البيئه.

المواصلات في الشوارع هو احد الاسباب الرئيسيه للتلوث. تطلق السيارات ملايين الاطنان من الغازات الملوثة للهواء، الضارة بالصحة والجو على حد سواء. يكمن السبب الرئيسي في عملية التلوث هذه، في حرق البنزين، علما ان احتياطي النفط العالمي قابل جدا للنفاذ. تم الالتفات مؤخرا الى النباتات على انها مصدر للطاقة النظيفة والقابلة للتجديد. لدى النباتات قدرة مدهشه على استخدام الضوء، لتحويل ثاني اكسيد الكربون في الهواء، الى مواد غنية بالطاقه، تسمى هذه المادة بالبيوماس. يمكن للبيوماس ان يكون مصدرا مفيدا للوقود السائل يسمونه بالوقود العضوي او الوقود الاخضر. يمكن الحصول على الوقود الاخضر من نباتات تحتوي على السكر، كالشمندر مثلا. الخلايا التي وجدت في الخشب او في سنابل القمح، هي ايضا مصادر للطاقه. فالنشا مثلا يتالف من سلسلة طويله تعتمد اساسا على خلايا سكريه. يتم تخزين هذه السلاسل في مستودعات الحبوب، تستعمل الصناعة مادة النشا في صناعة البيوايتانول، وهو نوع من الكحول، يستخدم في صقل الوقود التقليدي بان يحل محل اعتماده على مادة الرصاص. في مصانع البيو ايثانول، يتم تنظيف الحبوب اولا وازالة الشوائب منها تماما. المادة المستخرجة من هذه العملية تخلط بالماء. بعد الحصول على العجين يتم اضافة مادة الانزيم اليها. مفعول هذه المادة العضوية اشبه بعمل الكماشه، فهي تقص سلاسل النشا فتحولها الى وحدات من السكر. العصير الذي يتم الحصول عليه ينقل الى مستوعبات كبيره مليئة بالخميره. تعتبر هذه مرحلة التخمير. يستهلك الخمير السكر الموجود في العصير، ثم يحولها الى ايثانول عضوي وثاني اكسيد الكربون. بهذه المرحله، ما زال الكحول يعبأ بالماء، لهذا فهو مقطر، وبعدها ، يجفف الماء، بتمريره عبر انبوب تسخين يبخره. بما انه اخف من الماء، يصعد الكحول الى اعلى الانبوب، حيث يتم جمعه على شكل بخار. ثم يتم اعادة تكرير البقايا التي تستخرج من هذه العمليه. يتشكل المحصول اساسا من البروتين والانسجه التي تتجمع مع بعضها لتشكل كريات تسمى حبوب الجعه. وهي تستخدم لتغذية المواشي. يمكن استخدام الايثانول العضوي في المحركات، وهو على حاله او بمزجه مع البنزين. ولكنها غير قابلة للاستعمال في محركات المازوت. فقد تم تطوير وقود عضوي اخر لاستخدامه في مصانع المازوت.

يمتاز هذا الوقود المصنوع من اللفت او زيت دوار الشمس بمواصفات مشابهة للمازوت الذي يستعمل في محركات الديزيل. الوقود العضوي لا يحد من مفعول محركات السيارات عموما. ولكنه على خلاف الوقود التقليدي فهو لا يؤثر سلبا على احوال البيئه. غالبية الغازات السامة تصدر عن عدم الاحتراق الكامل للبنزين او المازوت. الوقود العضوي يتخطى هذه العقبات. فامتلاك ذراته لمزيد من الاكسجين، يضمن احتراقه كاملا. مما يقلل من نسبة الهيدرو كربون الغير محترق بنسبة ثلاثين بالمئه. احد المبررات الاخرى في صالح الوقود العضوي هو انه على خلاف الوقود التقليدي لا يؤثر سلبا على التوازن البيئي للكرة الارضيه.

تزداد سنويا نسبة ثاني اكسيد الكربون المطلقة الى الهواء بخمسة بلايين طن اكثر من العام السابق. استمرار عملية نمو كميات ثاني اكسيد الكربون على المدى البعيد سيؤدي الى تسخين الارض الى مستويات لا يمكن تخيلها. عندما يحترق الوقود المستخرج من النباتات يصدر ثاني اكسيد الكربون ايضا. ولكنها لا تزيد من مستوى ثاني اكسيد الكربون في الهواء. ذلك لان احتراق الوقود العضوي يؤدي ببساطة الى اعادة تحريك ثاني اكسيد الكربون الموجود اصلا في الجوعلى شكل بيو ماس. من هذه الناحيه لا يرفع الوقود العضوي من مستويات ثاني اكسيد الكربون في الهواء. كما انها لا تصدر غازات ملوثه كالرصاص والنترات والسولفير. الا ان للوقود العضوي عيوبه، فهو يصدر عند احتراقه غازالديهايدس، وهو مركب من مشتقات الايثانول. الا ان هذه المركبات لا تترك اثارا سلبية على احوال البيئه. ولكنها في المستويات العليا يمكن ان تترك رائحة كريهه. هذه هي حقيقة المازوت المشتق من وقود النباتات. فهو يترك رائحة شحم مطبوخ. لهذا فهو يستخدم كوقود للجرارات الزراعية بدل السيارات في المدن.

الخــــاتمة:
———–.
اهتمامنا بالبيئة النظيفة تدفعنا للبحث عن مصادر اخرى بديلة للطاقه اقل تلويثا للبيئه. الطاقة بشكلها السائل هي اسهل لنقلها وتخزينها. مما يجعل الوقود الاخضر مصدرا واعدا لانتاج الطاقة البديله. حل مشكلة الطاقة لدينا يكمن في تعدد مصادر الطاقة وتمويلها. لذا يجدر بنا ان ننشر طواحين الهواء ومحطات الطاقة الشمسيه، بقدر ما تنتشر محطات البنزين.

مشْكُـــوورينْ ..

بَـــآرككم البَـــآري..

اللعم اعز الاسلام و المسلمين

التصنيفات
الصف العاشر

تقرير عن استكشاف الشغل و الطاقة للصف العاشر

أبي تقرير جاهز لمشرووع الفيزيا
ومشروعي عن استكشاف الشغل و الطاقة ، هذا المشرووع بتلقونه في كتاب التمارين من مختبر الاستكشاف ، صفحة 69..

الله يخلييييييييييييكم ساعدوووووني

الملفات المرفقة

وييييييييينكم؟؟؟؟؟!!!!!!
أفاا ما هقيتها منكم !!!!

الشغل أو العمل ، في علم الفيزياء هو كمية الطاقة المتحولة للتحريك بقوة ما لمسافة ما ، ورياضيا

ش = ق*ف

حيث ش هو الشغل ووحدته القياسية الجول . ق هي القوة ووحدتها القياسية النيوتن. ف هي المسافة ووحدتها القياسية هي متر.

بحيث تكون القوة والمسافة على خط واحد ، فليست كل قوة منتجة لشغل ، والشرط هو وجود مركبة تربط بين القوة والمسافة.

،،

إن مفهوم الشغل والطاقة مهم جداً في علم الفيزياء، حيث توجد الطاقة في الطبيعة في صور مختلفة مثل الطاقة الميكانيكية Mechanical energy، والطاقة الكهرومغناطيسية Electromagnetic energy، والطاقة الكيميائية Chemical energy، والطاقة الحرارية Thermal energy، والطاقة النووية ******* energy. إن الطاقة بصورها المختلفة تتحول من شكل إلى آخر ولكن في النهاية الطاقة الكلية ثابتة. فمثلا الطاقة الكيميائية المختزنة في بطارية تتحول إلى طاقة كهربية لتتحول بدورها إلى طاقة حركية. ودراسة تحولات الطاقة مهم جداً لجميع العلوم. وفى هذا الجزء من المقرر سوف نركز على Mechanical energy. وذلك لأنه يعتمد على مفاهيم القوة التي وضعها نيوتن في القوانين الثلاثة، ويجدر الذكر هنا أن الشغل والطاقة كميات قياسية وبالتالي فإن التعامل معها سيكون أسهل من استخدام قوانين نيوتن للحركة، وذلك لأننا كنا نتعامل وبشكل مباشر مع القوة وهى كمية متجهة. وحيث أننا لم نجد أية صعوبة في تطبيق قوانين نيوتن وذلك لأن مقدار القوة المؤثرة على حركة الأجسام ثابت، ولكن إذا ما أصبحت القوة متغيرة وبالتالي فإن العجلة ستكون متغيرة وهنا يكون التعامل مع مفهوم الشغل والطاقة اسهل بكثير في مثل هذه الحالات. ولكن قبل أن نتناول موضوع الطاقة فإننا سوف نوضح مفهوم الشغل الذي هو حلقة الوصل ما بين القوة والطاقة. والشغل قد يكون ناتجاً من قوة ثابتة constant force أو من قوة متغيرة varying force. وسوف ندرس كلا النوعين في هذا الفصل…..

،،

هذا اللي قدرت عليه

والسمووحه

هذا تقرير عن ![ الطاقة ]! …

:::

الطاقة هي أحد المقومات الرئيسية للمجتمعات المتحضرة .وتحتاج إليها كافة قطاعات المجتمع بالإضافة إلى الحاجة الماسة إليها في تسيير الحياة اليومية ، إذ يتم استخدامها في تشغيل المصانع وتحريك وسائل النقل المختلفة وتشغيل الأدوات المنزلية وغير ذلك من الأغراض . وكل حركة يقوم بها الإنسان تحتاج إلى استهلاك نوع من أنواع الطاقة ويستمدَّ الإنسان طاقته لإنجاز أعماله اليدوية والذهنية من الغذاء المتنوع الذي يتناوله كل يوم ، إذ يتمّ حرق الغذاء في خلايا الجسم ويتحول إلى طاقة . ويمكن تعريف الطاقة بأنها قابلية إنجاز تأثير ملموس (شغل) . وهي توجد على عدة أنواع منها طاقة الريح ، وطاقة جريان الماء ومسا قطها . ويمكن أن تكون الطاقة مخزونة في مادة كالوقود التقليدي (النفط ، الفحم، الغاز) . ويمكن ، من الناحية التقنية ، تعريف الشغل بأنه تحريك جسم بقوه معينة مسافة معينة في اتجاه مواز لاتجاه القوة وعليه فإن : الشغل = القوه × المسافة ووحدات القوه هنا هي النيوتن (N) ووحدات المسافة المتر (m) : وعليه ستكون وحدات الشغل هي (N.m) أو جول (Joule) حيث أن النيوتن يُعرف بأنه القوة التي تقوم بتسريع كيلوغرام واحد (kg) بمعدل 1 متر في الثانية لكل ثانية (ms-2) .
والطاقة كمية محدودة مجموعها في الكون ثابت . والطاقة لا تفنى ولا تستحدث ، ولكنها تتحول من شكل إلى آخر مثل تحويل طاقة الرياح إلى طاقة كهربائية أو ميكانيكية ، أو تحويل الطاقة الكيميائية إلى حرارة . وإذا كانت كمية الطاقة الناتجة من عملية ما (الطاقة الكهربائية مثلاً) هي أقل من كمية الطاقة المستخدمة (كالوقود مثلاً) فهذا يعني أن بعض الطاقـة قـد تم فقده إذ تحول إلى شكل آخر (كالحرارة المهدورة) ، وهذا هو المبدأ الذي ينص على أن الطاقـة دائماً محفوظـة وهو ما يسمى بالقانـون الأول لديناميكا الحرارة (First law of thermodynamic) . وإذا كانت كمية الطاقـــة ثابتـــة دائمــاً ، كما ذكرنــا سابقــاً، فكيف يمكن استهلاكها ؟ الجواب عن ذلك هو أننا لا نستهلك الطاقة وإنما نحولها من شكل إلى آخر . نحن نستهلك الوقود الموجود في الطبيعة ونقوم بحرقه في مكائن الاحتراق الداخلي، ويتم تحويل طاقته الكيميائية إلى حرارة ومن ثم إلى طاقة حركية لتحريك العربات. كما أن طاقة الرياح تقوم بتحويل طاقة الهواء الحركية إلى طاقة كهربائية تقوم بتشغيل المصابيح التي تشع طاقة ضوئية ، أو تنتج طاقة ميكانيكية كضخ المياه أو طحن الحبوب . كما أن الغابات تنمو أيضاً بتحويل طاقة الإشعاع الشمسي إلى طاقة كيميائية تعمل على نمو خلايا النباتات .
وتتوفر الطاقة على أشكال مختلفة يمكن حصرها بأربعة مستويات رئيسية هي :
الطاقة الحركية (Kinetic Energy) ===
[ == == الطاقة الحركية الدافعة لأي جسم متحرك يمكن أن تمثل بالمعادلة التالية:
الطاقة الحركية = ½ × الكتلة × مربع السرعة ، ووحدات الطاقة الحركية هي نفس الوحدة لكل أنواع الطاقة وهي "الجول" (Joule) ، ووحدات الكتلة هي الكيلوغرام (Kg) ، ووحدات السرعة هي المتر/الثانية (m/sec) . ½ mV2 = Ek
إن الطاقة هي التي تجعل الأشياء دافئة ، فالمواد تتكون من ذرات ، ومجموع الذرات تسمى الجزيئات . وفي غاز ، كالهواء المحيط بنا مثلاً ، فإن هذه الجزيئات تتحرك بحرية . ولكن في السوائل والمواد الصلبة فإن الحركة تكون مقيدة نسبياً . وكل جزء أو جسيم يتذبذب بشكل ثابت . والطاقة الحرارية (الحرارة) هي اسم أعطي للطاقة الحركية التي تنتج عن حركة الجزيئات العشوائية السريعة ، وكلما كانت الحرارة أكبر كانت السرعة أعلى .
الحرارة ودرجة الحرارة
يمكن توضيح معنى الحرارة بما يلي : عندما تتلامس جزيئات سريعة الحركة من مادة دافئة أو حارة مع جزيئات أقل منها سرعة من مادة أقل حرارة فإن التصادم بين هذه الجزيئات سيزيد من سرعة الجزيئات البطيئة ويقلل من سرعة الجزيئات السريعة ، وعليه يمكن توضيح الطاقة الحركية بأنها سريان حراري يتجه من الجزء الحار (ذي السرعة العالية) إلى الجزء البارد (ذي السرعة القليلة) . == ==] إن اتجاه سريان الحرارة يزودنا بإمكانية تعريف المقياس النسبي للحرارة أو ما يسمى بدرجة الحرارة (Temperature) . فدرجة الصفر في مقياس درجة الحرارة في سلم Celsus تتوافق مع السكون التام في حركة الجزيئات (جزيئات ساكنةً) وهي موافقة لحالة التجمد في الماء ، ودرجة 100 مئوية موافقة لحالة غليان الماء . إن الوحدات الشائعة الاستخدام في هذا المجال هي الدرجة المئوية (Co) ودرجة كلفن (Ko) والعلاقة التي تربطهما هي : درجة الحرارة (Ko) = درجة الحرارة المئوية (Co) + 273
[تحرير] ثانيا : الطاقة الكامنة (Gravitational Energy Or Potential Energy)
وهي الطاقة المبذولة اللازمة لرفع جسم ، وذلك لكون الجاذبية الأرضية تعاكس هذا الفعل . فعند رفع أي جسم ، سواءً كان تفاحة ، لارتفاع معين ، أو عند رفع عدة آلاف الأطنان من الماء إلى مستوى أعلى ، فإنه سيتم خزن طاقة في ذلك ، وفي هذه الحالة يمكن تسميتها بطاقة الجاذبية الكامنة (وتسمى دائماً الطاقة الكامنة). إن قوة الجاذبية لسحب أي جسم إلى الأرض تسمى وزن الجسم ، ويساوي حاصل ضرب كتلته (m) في تعجيل الجاذبية الأرضية (g = 9.81ms-2) . وعليه فإن الطاقة الكامنة اللازمة لرفع أي جسم إلى ارتفاع معين يمكن حسابها من المعادلة التالية :
الطاقة الكامنة = القوة × المسافة = الوزن × الارتفاع = mgh . ووحدات الطاقة هي الجول (J) ، ووحدات القوه هي النيوتن (N) ، ووحدات الكتلة هي الكيلوغرام (Kg) ، ووحدات الارتفاع هي المتر(m) .
[تحرير] ثالثا : الطاقة الكهربائية (Electrical Energy)
إن قوى الجاذبية هي أكثر القوى وضوحاً عندنا ، فهي تؤثر في الأجسام بشكل ملموس ، لكنها ليست هي الوحيدة التي تنفرد بهذا الوضوح فالطاقة الكهربائية (Electrical Energy) هي قوة واضحة جداً ، وهي أكبر من الجاذبية تأثيراً بحوالي مئات المرات. فالقوى الكهربائية هي التي تربط الذرات والجزيئات للمواد ولكنها لا يمكن إدراكها بالعين المجردة . فكل ذرة تتكون من أجزاء مشحونة كهربائياً ، فالإلكترونات تدور حول مركز النواة ، وعندما تجتمع الذرات لتكوين جزيئات أو مواد صلبة فان توزيع الإلكترونات يتغير . وفي معظم الأحيان يكون التغير كبيراً جداً ولهذا فإن الطاقة الكيميائية المنظورة على مستوى الذرات هي شكل من أشكال الطاقة الكهربائية . فعندما يتم حرق الوقود فإن الطاقة الكيميائية التي تحتويها ستتحول إلى طاقة حرارية. ومن البديهي أن الطاقة الكهربائية التي تتحرر نتيجة تبدل مواضع إلكترونات الذرة تتحول إلى طاقة حركية في جزيئات المنتج المحترق . والشكل المألوف من أشكال الطاقة الكهربائية هو القوه الكهربائية التي نستخدمها في حياتنا اليومية . فالتيار الكهربائي هو عبارة عن تيار منتظم من الإلكترونات في المادة ، وفي معظم الأحيان تكون هذه المادة معدناً (XXXXl) ، والمعادن هي مواد يتم فيها تحرر إلكترون واحد أو اثنين من ذراتها . وبوجود هذه الإلكترونات المتحررة يمكن لهذه المعادن حمل التيار الكهربائي . ولضمان مرور تيار كهربائي بصورة دائمة فإنه ينبغي توفر طاقة مستمرة لأن الإلكترونات ستفقد طاقة عند اصطدامها . ولهذا فان ازدياد الطاقة الحركية في المعدن هو الذي يرفع درجة حرارة الأسلاك التي تحمل التيار الكهربائي . والبطارية تستخدم الطاقة الكيميائية المخزونة لتوفير الطاقة إلى الدوائر الكهربائية في الأجهزة .
وتحتاج محطات توليد الطاقة الكهربائية إلى عمليات متتالية في تحويل الطاقة . فإذا كان الوقود هو الطاقة المستخدمة فإن الخطوة الأولى ستكون حرقه واستخدام الحرارة الناتجة عنه لإنتاج بخار أو غاز ساخن ، وهذا البخار أو الغاز سيقوم بتدوير التوربينات (العنفات) التي بدورها تقوم بتدوير المولدات الكهربائية .
وهناك شكل آخر من أشكال الطاقة الكهربائية يكون على شكل إشعاع الكترومغناطيسي (كهرمغناطيسي) أو ما يسمى بالطاقة الكهرمغناطيسية ، وهي على شكل إشعاع شمسي يصل إلى سطح الأرض . وتشع الطاقة الكهرمغناطيسية من كل جسم متوهج كالشمس بكمية كبيرة أو قليلة ، وتنتقل على شكل موجات تحمل طاقة خلال الفراغ . وطول الموجة يوضح مقدار طاقتها ونوعها . وهذه الموجات الحاملة للطاقة تتضمن التالي : الأشعة السينية (X-rays) ، والأشعة فوق البنفسجية (Ultraviolet) ، والأشعة تحت الحمراء (Infrared radiation) ، والأمواج المايكروية أو الدقيقـة (Microwaves) ، والأمواج الراديوية (Radio waves) ، بالإضافة إلى حزم قليلة من الأمواج التي تستطيع العيــن المجردة إبصارها (رؤيتها)، والتــي تسمى بالأشعة المرئيــة (Visible Waves) .
[تحرير] رابعا : الطاقة النووية (XXXXXXX Energy)
هذا النوع من الطاقة هو ما يتعلق بمركز النواة والذي يسمى بالطاقة الذرية أو النووية . لقد تم تطوير هذه التكنولوجيا خلال الحرب العالمية الثانية لأغراض عسكرية . وتستخدم الآن أيضاً لأغراض سلمية مثل توليد الطاقة الكهربائية . وتعمل محطات الطاقة الكهربائية التي تستخدم الوقود النووي بنفس الطريقة التي تعمل بها محطات الوقود التقليدي مع فرق يتمثل في أنّ أفران حرق الوقود يتم استبدالها بمفاعل نووي لتوليد الحرارة . والله اعلم
[تحرير] 2-1 كفاءة تحويل الطاقة :
عندما يتم تحويل الطاقة من شكل إلى آخر لسبب معين فإن الطاقة الناتجة والمفيدة سوف لا تكون مساوية للطاقة المتوفرة أو المجهزة ، والنسبة بين الطاقة الناتجة والطاقة المتوفرة تدعى الكفاءة . ويمكن أن تكون الكفاءة عالية حتى تصل إلى أكثر من 90% ، كما هو الحال في العنفة المائية أو في محرك كهربائي جيد الصنع ، أو تكون أقل من ذلك بكثير فتتراوح من 10% إلى 20% في مكائن الاحتراق الداخلي وأجهزة الطاقة الشمسية وتحديداً الخلايا الفولطاضوئية ، أو تتراوح بين 35% و 40% في محطات توليد الطاقة الكهربائية التي تستخدم الفحم كمصدر للطاقة أو محطات تحويل طاقة الرياح إلى طاقة كهربائية أو ميكانيكية . ويمكن التفريق بين أنظمة التحويل عالية الكفـاءة وأنظمـة التحـويل منخفضـة الكـفاءة بـأن الأخـيرة تتضمن التحويـل من حرارة إلى طاقة ميكانيكية أو كهربائية . فالحرارة ، كما عرفناها سابقا ، هـي الطاقـة الحركيـة للجزيئات التي تـتحـرك بصــورة عشـوائيـة ، وهـي نـوع مـن الحـركة غـير المنتظــمة ، ولا توجــد ماكـنة أو آلـة تستطـيع تحويـل الطاقة غير المنتظمة إلى طاقـة منتظمة كالطاقـة الميكانيكية أو الكهربائية بدون خسائر كما ينص على ذلك القانون الثاني لديناميكا الحرارة (Second law of thermodynamic) وهو "أن هناك كفاءة محدودة للماكنة الحرارية ، وأن قسماً من الطاقة يجب أن يطرح خارجاً كحرارة (الفاقد) ذات درجة حرارة منخفضة" .
لقد تمكن الإنسان منذ القدم من استغلال طاقة الرياح في تحريك السفن في الأنهار والبحار ، واستخدامها في إدارة بعض طواحين الهواء لرفع المياه أو طحن الحبوب وغير ذلك من الاستخدامات . كما تمكن من استغلال الفرق في منسوب المياه من أجزاء بعض الأنهار في إدارة بعض السواقي ، وتشغيل الآلات . وقد عرف الإنسان الفحم منذ أن اكتشف النار ولاحظ أن بعض الأحجار السوداء الموجودة في الطبيعة تقبل الاشتعال . وقد استخدم الإنسان الفحم بعد ذلك كمصدر من مصادر الطاقة إلى أن تم اكتشاف النفط ، وما يصاحبه من غاز طبيعي. وقد ازداد استخدام النفط والغاز في هذه الأيام وأصبح النفط أهم مصادر الطاقة في الوقت الحاضر، ويعدّ توفره أساسياً في تلبية متطلبات التنمية الاقتصادية والتقدم الصناعي . إن أكثر من 40% من الطاقة المستهلكة في العالم يتم توفيرها من منطقة الخليج العربي الذي يحتوي على أكثر من ثلثي مخزون العالم ، وهذا يوضح الأهمية الكبرى التي توليها الدول الكبرى لهذه المنطقة والتعاون معها وأحياناً السيطرة عليها .
ولفهم الطاقة بصورة واضحة يجب معرفة أنواعها ، ومصادرها ، ومحدداتها، والتأثيرات البيئية الناجمة عن استخدامها ، والاعتبارات الاجتماعية والتكنولوجية المتعلقة بها . وللحفاظ على النمو الاقتصادي وتحسين نوعية حياة الإنسان في القرن المقبل يجب أن يوجد تخطيط محكم لاستخدام الكمية المحدودة من مصادر الطاقة التقليدية وتطوير مصادر بديلة. أنس السلقيني من سوريا حمص
[تحرير] 3-1 الواقع الحالي لاستخدام الطاقة :
تعتمـد المجتمعات المتقدمة على مصادر الطاقة المختلفة في كافة مرافق الحياة. وغالبية المصادر المستخدمة حالياً هي مصادر الوقود الأحفوري . وقد كانت النسـب المئـوية لاسـتهلاك مصـادر الطـاقة المختلـفة فـي عــام 1992 (الشكل 1-1) كما يلي : النفط 33% ، والفحم 22.8% ، والغاز 18.8% ، ومصادر الكتلة الحيوية 13.8% ، والمحطات المائية 5.9% ، والمحطات التي تعمل بالطاقة النووية 5.6% .

شكل (1-1): النسب المئوية لاستهلاك الطاقة من المصادر المختلفة في عام 1992
الجدول (1-1) يبين كمية الطاقة المستهلكة خلال الأعوام من 1990 وإلى غاية 1998 لكل من الدول العربية وبقية الدول النامية والدول المتقدمة والمجموع العالمي للاستهلاك . ويلاحظ من الجدول أن استهلاك الدول العربية عام 1998 كان حوالي 3.6% من مجموع الاستهلاك العالمي وذلك لكونها دولاً نامية وغير صناعية ، بينما وصل الاستهلاك في أمريكا الشمالية (الولايات المتحدة ، وكندا ، والمكسيك) إلى حوالي 30% . وقد كان الاستهلاك في الولايات المتحدة ، وهي تمثل 5% من مجموع سكان العالم ، حوالي 25% من الاستهلاك العالمي . ويوضح الشكل (2-1) معدل الاستهلاك السنوي للشخص الواحد في مختلف مناطق العالم ، والمعدل العالمي السنوي لاستهلاك الفرد .

ويتم حالياً استخدام مصادر الطاقة في أربعة مجالات رئيسية هي : النقل ، والصناعة ، والسكن (دور منفردة وعمارات سكنية) ، والقطاع التجاري (مكاتب، مدارس ، مخازن …. الخ) . وإنّ جزءاً كبيراً من الطاقة المستهلكة يُستخدم كحرارة وليس لإنتاج شغل ، ويُمثل نسبة مقدارها حوالي 50% من الطاقة المستهلكة كخسائر حرارية ، وأكثر ما يحدث ذلك عند محطات توليد الطاقة الكهربائية حيث تساوي نسبة الضياع على شكل حرارة 64% من الطاقة المستهلكة (الداخلة) مقابل 36% من الطاقة الكهربائية المنتجة أو المفيدة أي أن الكفاءة تساوي 36% فقط .
[تحرير] 4-1 مصادر الطاقة التقليدية
لفهم الطاقة يجب معرفة مصادرها ، وحدودها ، واستخداماتها . ولتكوين سياسة جيدة وفاعلة تجاه الطاقة يجب أن نعرف كمية مصادر الطاقة ومدى ديمومتها واستمراريتها . والإجابة عن مثل هذه الأسئلة ليست سهلة لأنها تعتمد على التقنيات المستقبلية لاستخراج هذه المصادر ، وأسعار الطاقة ، ونمو الاستهلاك .
إن تقدير كميات الفحم أسهل من تقدير كميات النفط والغاز وذلك لكون حقول النفط والغاز موجودة في مناطق متباعدة وعلى أعماق تتراوح من مئات الكيلومترات إلى عدة كيلومترات ، ولا يمكن معرفة مكانها إلاّ بطرق استكشاف مكلفة جداً . والجدول (2-1) والشكل (4-1) يبينان الاحتياطي النفطي العالمي واحتياطي دول المنطقة العربية على الترتيب ، إذ يتبين واضحاً أن احتياطي الدول العربية من النفط كان 643.6 مليار برميل في عام 1998 ، وهذا يمثل أكثر من 63% من الاحتياطي العالمي ، ومنه يمكن القول أن الدول العربية وخاصة دول الخليج العربي ستبقى المصدر الرئيسي لتمويل الطاقة في العالم .

أما بالنسبة إلى الغاز الطبيعي فالوضع مختلف . ففي الوقت الحاضر بلغ احتياطي الدول العربية في عام 1998 ، وكما هو موضح بالجدول (3-1) والشكل (5-1) ، ما مقداره 32708 مليار متر مكعب ، وهو ما يعادل 22% من الاحتياطي العالمي .

إن إنتاج الدول العربية من إنتاج الطاقة الكلي في عام 1998 ، وكما هو مبين بالجدول (4-1) والشكل (6-1) ، كان 30.6 مليون برميل مكافئ نفط يومياً ، وهو يمثل نسبة 17.6% من مجموع الإنتاج العالمي . وهذه النسبة ستزداد مع مرور الوقت ، وسيزداد الاعتماد العالمي على مصادر الطاقة العربية ، حسب ما هو متوقع ، عند النظر إلى كمية الاحتياطات الضخمة الموجودة في المنطقة العربية من هذه المصادر .

[تحرير] المشاكل الناتجة عن استخدامات مصادر الطاقة :
أ – ارتفاع حرارة مناخ الكرة الأرضية
معظم المشاكل الناتجة عن الاستخدام المتزايد لمصادر الطاقة التقليدية هي مشاكل بيئية وأهمها ارتفاع درجة حرارة المحيط الذي نعيش فيه . ويعتقد معظم العلماء أن درجة الحرارة ترتفع بمعدل 0.3 درجة مئوية في كل عقد وذلك نتيجة لزيادة تركيز بعض الغازات في الجو . ويزعم بعض الباحثين أن أكثر الغازات سبباً في رفع درجة الحرارة هو غاز ثاني أو كسيد الكربون (Co2) الذي يتحرر نتيجة حرق الوقود التقليدي . إلاَّ أن هناك نظريات حديثة تشير إلى أن الأشعة الكونية المرتبطة بدورة النشاط الشمسي هي أحد الأسباب الرئيسية لارتفاع مناخ الأرض ، وأن حرارته ستشهد انخفاضاً يليه ارتفاع ودواليك .
إن درجة حرارة المحيط تتحدد بواسطة عملية الموازنة بين الإشعاع القادم من الشمس والإشعاع المنبعث من الأرض . وبما أن الشمس هي أكثر حرارة من الأرض (درجة حرارة سطح الشمس تقدر بحوالي 6000 درجة مئوية) فإن الإشعاع المنبعث منها يكون بذبذبات عالية (موجات قصيرة) من الضوء المرئي . أما درجة حرارة سطح الأرض فتقدر بـ15 درجة مئوية في المتوسط ، وأن الإشعاع المنبعث يكون ذا ذبذبات قليلة (موجات طويلة) من الأشعة تحت الحمراء . فالتعادل بين الإشعاع الداخل والخارج يتأثر بالامتصاص والانعكاس اللذين يحدثان في المحيط الخارجي . فمثلاً تعكس السحب التي تغطي المحيط جزءاً كبيراً من أشعة الشمس قبل أن تصل إلى سطح الأرض ، وبهذا تنخفض درجة حرارة سطح الأرض . كما أن هناك غازات لها القدرة على امتصاص الأشعة تحت الحمراء ومنها دون ذلك فعلى سبيل المثال جزيئات الأوكسجين (O2) والنيتروجين (N2) ، التي يتكون منها معظم الغلاف الجوي (إذ تتكون كل منها من ذرتين فقط) لا تمتص الموجات الطويلة ، ولكن معظم الجزيئات المعقدة كثاني أو كسيد الكربون (CO2) والماء (H2O) وغاز الميثان (CH4) وكربونات الفلورين (CFCS)، ومواد كيميائية أخرى تحتوي على عدة ذرات كلها تمتص الأشعة تحت الحمراء . وبصورة عامة فإن الجزيئات الأكثر تعقيداً لها قابلية أكثر على الامتصاص من الجزيئات الأخرى غير المعقدة . وزيادة تركيز الغازات المعقدة في الجو تساعد على ارتفاع حرارة المحيط إذ تسمّى هذه الظاهرة بظاهرة البيت الزجاجي (Greenhouse Effect) أو الاحتباس الحراري لأنها تقوم بنفس عمل البيوت الزجاجية في حبس الحرارة داخل الحيز . والغازات المتسببة في رفع هذه الحرارة تسمى بغازات البيت الزجاجي أو غازات الصوبه أو الغازات المحتبسة .
وتوجد أنواع مختلفة من الوقود تنتج كميات متباينة من غاز ثاني أكسيد الكربون بالنسبة إلى وحدة الطاقة المتحررة . فالفحم عبارة عن كربون وحرقه ينتج ثاني أكسيد الكربون . أما عند حرق الغاز الطبيعي (الميثان) فإن الناتج هو بخار ماء وثاني أكسيد الكربون ، وهو يبث كمية أقل من ثاني أكسيد الكربون بالنسبة إلى وحدة الطاقة . أما النفط فإنه يقع في الوسط بين الفحم والغاز بالنسبة إلى انبعاث ثاني أكسيد الكربون لأنه يتكون من خليط من الهيدروكربونات ، ولهذا السبب يتم حالياً التحول إلى استخدام الغاز الطبيعي بدلاً من الفحم والنفط في محطات توليد الطاقة الكهربائية بالرغم من وفرة الفحم بكميات كبيرة . وكانت نسبة غاز ثاني أكسيد الكربون في المحيط الخارجي تساوي حوالي 280 جزءاً بالمليون قبل النهضة الصناعية وذلك عام 1800 ميلادية لكن وصلت الآن إلى 350 جزءاً بالمليون . ونصف هذه الزيادة حدثت بعد عام 1960 ميلادية . وإذا استمر انبعاث غاز ثاني أكسيد الكربون بنفس الوتيرة فإن التركيز سيتضاعف في عام 2100 ميلادية. وتقدر زيادة معدل الانبعاث السنوي الحالي بمقدار 1.5 جزء بالمليون سنوياً. والغاز الآخر الرئيسي من غازات البيت الزجاجي (أو ظاهرة الصوبة الحرارية) ، هو غاز الميثان (CH4) الذي ينتج من احتراق الكتلة الحيوية والفحم أو من تسرب الغاز الطبيعي المصاحب للنفط إلى الجو، ويتحرر أيضاً من فضلات الحيوانات ، ومن تحلل المواد العضوية في المستنقعات وحقول الرز . فالتركيز الحالي لغاز الميثان هو 1.7 جزء بالمليون ، وقد كان هذا التركيز حوالي 0.8 جزء بالمليون قبل النهضة الصناعية علماً بأن غاز الميثان له القدرة على احتباس الحرارة بعشرات المرات مقارنة بثاني أكسيد الكربون .
مما ورد أعلاه يتبين أن النشاطات البشرية لها تأثير كبير في زيادة تركيز غازات البيت الزجاجي في المحيط . وقد تمت دراسة التوقعات المستقبلية حول تأثير هذه الغازات على الظروف الجوية في المستقبل . وتوصل بعض العلماء بأنه في عام 2XXXميلادية يمكن أن يصل تركيز غاز ثاني أكسيد الكربون أو الغازات الأخرى الموجودة إلى ضعف الكمية الحالية وذلك سيسبب زيادة درجة الحرارة ما بين 1.5 إلى 4.5 درجة مئوية . ومن المحتمل أيضاً أن تزداد الأمطار ، ويقل الثلج في البحار ، ويقل سقوط الثلوج الموسمية أيضاً . وسيكون لهذا تأثير على المناطق الزراعية في العالم لأن ذلك سيزيد من مخاطر الجفاف الذي يعتبر أكبر المشاكل التي تواجه الزراعة حالياً . وسيكون هنالك أيضاً ارتفاع في مستوى ماء البحر الذي سيؤدي إلى غمر مئات الآلاف من الكليومترات المربعة في المناطق الساحلية المنخفضة .
ب – الأمطار الحِمضيّة
من المخاطر الجانبية لحرق الوقود هو تساقط الأمطار الحمضية . فبعض الغازات التي تتحرر عند احتراق الوقود ، وبالأخص ثاني أكسيد الكبريت وأكسيد النيتروجين ، تتحد مع الماء في الجو مكونة حامض الكبريتيك وحامض النتريك . ونتيجة لهذا فإن أي مطر يتساقط على منطقة ما ستكون حامضاً ويسبب ذلك تلفاً للنباتات وتعطيلاً لنمو الغابات ، وتفتيت بعض أجزاء الأبنية وصدأ للمعادن .
ومعظم غاز ثاني أكسيد الكبريت ينبعث من المحطات الكهربائية التي تستخدم الفحم وقوداً . وتوجد عدة تقنيات يمكن استخدامها في هذه المحطات لتقليل انبعاث ثاني أكسيد الكبريت . والطريقة الشائعة الاستخدام هي امرار الغازات الخارجة خلال خليط من كاربونات الكالسيوم والماء التي تمتص الكبريت لإنتاج كبريتات الكالسيوم أو ما يسمى بالجبس . وهذه الطريقة لها مساوئ جانبية منها تقليل كفاءة إنتاج الطاقة الكهربائية ، وزيادة انبعاث غاز ثاني أكسيد الكربون ، وزيادة كلفة الإنتاج. وهنالك طريقة أخرى هي بدفع الهواء خلال غرفة حرق الفحم وبوجود بعض الأحجار الكلسية .
أما الغاز الآخر الذي يسبب الأمطار الحمضية فهو أكسيد النيتروجين (NOx). وينتج هذا الغاز من عمليات الاحتراق ذات الدرجات الحرارية العالية وذلك نتيجة لوجود بعض المواد النيتروجينية في الوقود مثل الفحم والخشب أو تتكون جزئياً بواسطة أكسدة النيتروجين في الهواء . ويتحرر أكسيد النيتروجين بكميات كبيرة من مكائن شاحنات النقل والسيارات ومن محطات الطاقة الكهربائية .
جـ – تلوث البحار بواسطة النفط
إن محطات توليد الطاقة الكهربائية ، ومصافي النفط ، والمصانع الكبيرة يمكنها أن تكون أكثر الملوثات المنظورة ، وذلك بسبب روائحها المميزة. وليست كل الملوثات الضارة بالبيئة سببها حرق الوقود ، ولكن هنالك مسببات أخرى مثل نقل الوقود عبر البحار . إن معظم الطاقة المصدرة من الدول المنتجة تنقل بواسطة البحار والمحيطات إلى البلدان المستهلكة . وقد تطور أسلوب النقل وأصبحت الناقلات ذات سعة كبيرة جداً . وبقطع النظر عن الحوادث فإن هذه الناقلات تساهم بدرجة كبيرة في تلوث البحار إذ أنه عند عودتها إلى مكان التصدير، بعد تفريغ شحنتها ، تملأ بالماء لغرض الموازنة ، وعند تفريغ الماء تخرج معه كمية من النفط المتبقي . وبالرغم من أن أساليب النقل في الوقت الحاضر أصبحت أكثر أماناً وضماناً فإنه عند حصول حادثة ما سيكون التأثير كبيراً . ففي الفترة ما بين 1970 و 1985 وقعت 186 حادثة تسرب في كل منها أكثر من 1300 طن من النفط . وفي عام 1989 تسرب من إحدى الناقلات 39000 طن من النفط وغطى مساحة 1600 ميل مربع في ولاية الآسكا الأمريكية .
د – الإشعاع والمخلفات النووية
كان من المتوقع أن تكون الطاقة النووية أحد المصادر الرئيسية في إنتاج الطاقة الكهربائية ولكن هذا لم يتم بسبب المعارضة الواسعة التي تواجه نصب هذه المحطات في مختلف أنحاء العالم . هذه المحطات تنتج حالياً 6% من الطاقة الكهربائية في العالم . وبعد حادثة تشرنوبل في الاتحاد السوفيتي السابق عام 1986 أصبح نصب مثل هذه المحطات محدوداً . ومن المشاكل المتعلقة بمحطات الطاقة النووية أن المواد المستخدمة في الانشطار النووي ذات إشعاع عالٍ جداً ، وقسم منها يبقى مشعاً إشعاعاً نووياً لعشرات الآلاف من السنين . كما أن طرق التخلص من النفايات النووية غير مضمونة ، وبالإضافة إلى ذلك فإن تفكيك المحطات التي انتهت أعمارها يسبب تسرب إشعاع نووي أيضاً . وأن أخذ أقصى درجات الحيطة والحذر في عدم تسرب الإشعاع أدى إلى استخدام أجهزة معقدة وعالية الكلفة ، ولهذا السبب فإن كلفة إنشاء هذه المحطات أعلى من كلفة محطات توليد الطاقة بواسطة الوقــود ، وإن كلفة إنتاج الطاقة الكهربائية في هذه المحطات أعلى من المحطات الاعتيادية .
6-1 استمرارية توفر مصادر الطاقة :
إن وضع الطاقة في الوقت الحاضر يختلف عما كان عليه في العقدين الماضيين . فانخفاض الأسعار ، وتوفر كميات كبيرة من الوقود في الأسواق أدّيا إلى الإسراف في استهلاك الطاقة ، وعدم الالتزام بترشيده ، وعدم البحث عن مصادر جديدة .
إن كمية الطاقة الموجودة في باطن الأرض محدودة ، ومن غير الممكن بقاؤها لفترة طويلة جداً . ولكن تقدير فترة بقائها ليس سهل أيضاً . فاحتياطي العالم من النفط ارتفع من 540 بليون برميل عام 1969 ميلادية إلى أكثر من 1000 بليون برميل في الوقت الحاضر . وهذا الارتفاع في الاحتياطي لا يعني أنه غير محدود . فلقد تم مسح مكامن الأرض بصورة مفصلة من قِبل شركات النفط واكتشفت الحقول السهلة والحقول ذات تكلفة الإنتاج القليلة . وهنالك حقول صعبة تحتاج إلى حفر عميق أو ذات طبيعة استخراج صعبة جداً وتحتاج إلى مواد وجهود كبيرة ، وقسم منها يحتاج إلى طاقة وأحياناً تكون الطاقة اللازمة للاستخراج مساوية أو أكثر من الطاقة المستخرجة. وفي هذه الحالات سيكون استخراج الطاقة بدون فائــدة .
من الأرقام المفيدة والمهمة جداً في هذا المجال نسبة الاحتياطي إلى المنتج . فإذا تم تقسيم الاحتياطي المضمون في نهاية كل سنة على الإنتاج في تلك السنة فإن الناتج سيمثل طول عمر الاحتياطي . وهذا الرقم سيدلّ على توفر الطاقة في منطقة معينة من العالم . فمثلاً لقد كان هذا الرقم في عام 1992 هو 10 أعوام لنفط غربي أوربا ، و 25 عاماً لأمريكا الشمالية بينما كان أكثر من 100 عام لمنطقة الشرق الأوسط . ويمتلك الشرق الأوسط أكثر من 60% من احتياطي العالم من النفط ، وتمتلك المملكة العربية السعودية وحدها أكثر من 25% من الاحتياطي .
ويختلف الأمر بالنسبة إلى الغاز الطبيعي . فإن الاحتياطي الأكبر يقع في دول الاتحاد السوفيتي السابق إذ تحتوي هذه المنطقة على أكثر من 40% من احتياطي العالم ، وتحتوي دول الأوبك على حوالي 40% أيضاً من الغاز. أما الباقي فإنه يتوزع على أنحاء مختلفة من العالم . وإن نسبة الاحتياطي إلى المنتج في الوقت الراهن بالنسبة إلى الغاز الطبيعي هي حوالي 65 عاماً .
أما بالنسبة إلى الفحم الحجري فإن الاحتياطي العالمي كبير وموزع على مناطق واسعة ومختلفة . ويبلغ مقدار الاحتياطي إلى المنتج بالنسبة إلى الفحم أكثر من 200 عام ، ولكن كما نعلم فإن للفحم مساوئ كثيرة ، حتى وإن قورنت بالنفط والغاز . وأهم هذه المساوئ هو انبعاث ثاني أكسيد الكربون وأكسيد الكبريت وأكسيد النيتروجين . وبالرغم من إمكانية تحويل الفحم إلى سائل لغرض تقليل مشاكله البيئية فإن سعر كلفة التحويل سيمثل عقبة لكونه عالياً .
مما تقدم أعلاه يتبين أنه إذا كان هدفنا هو تقليل كمية الوقود التقليدي الذي يتم حرقه لغرض إطالة عمره ولتقليل المخاطر البيئية التي يسببها فإنه يتوجب علينا البحث عن مصادر جديدة غير ناضبة وصديقة للبيئة ، وتطوير كفاءتها ، وتقليل أسعار منظوماتها . وهذه المصادر هي مصادر الطاقة المتجددة التي سنتحدث عنها بالتفصيل في الفصول اللاحقة

:::

والسموحه ..

ماهي الطاقة

حمليه من المرفقات

ادري المعلومات ما تكفي اعتذر هذا الي قدرت عليه
ان شاء الله بقية الاعضاء يقدرون يساعدونج

يزاااااااااااااااااااااااااااكم الله خير

جـــــــــــزآآآكِ الله خير كوبرااا

شكراا جزيلا >>

كانت الدنيا عفيفه والناس قلوبهم نظيفه والله البحث جميل

آلسلـآم عليكم وآلررحمه
أسعد آلله آوقآتجَ ..

مآ قصرن فديتهن.,
لآ هنتيَ (=
فـ ميزآن حسنآتكن آن شآءءآلله 3>

.
.

سبحان الله و بحمده

التصنيفات
الصف الثاني عشر

تقرير عن الطاقة النووية -تعليم الامارات

السلام عليكم

تقوم محطات الطاقة النووية بتزويد العالم بحوالي 17 % من الكهرباء وهناك بعض البلدان تعتمد أكثر من غيرها على الطاقة النووية من أجل توليد الكهرباء ففي فرنسا على سبيل المثال 75 % من الكهرباء يولد عن طريق الطاقة النووية طبقاً للوكالة الدولية للطاقة الذرية وفي أمريكا حوالي 15 % من الكهرباء يولد بالطاقة النووية ولكن بعض الولايات تأخذ كهرباء مولد بالطاقة النووية أكثر من الأخرى وهناك أكثر من 400 محطة للطاقة النووية حول العالم وأكثر من 100 فقي الولايات المتحدة.

هل تساءلت يوماً من الأيام عن كيفية عمل الطاقة النووية وعن كيفية بقاء الطاقة النووية آمنة؟
سنقوم في هذه المقالة بتوضيح كيفية عمل المفاعل النووي ومحطة الطاقة وسنقوم بشرح الانقسام النووي وإعطائك نظرة داخل المفاعل النووي.
إن اليورانيوم عنصر شائع جداً على الأرض دمج مع الكوكب أثناء تشكله وقد تشكل أصلاً في النجوم حيث انفجرت النجوم القديمة وتجمعت الغبار من هذه النجوم المحطمة لتشكل كوكبنا.
إن اليورانيوم 238 لديه نصف حياة طويل جداً (4.5 بليون سنة) ولهذا السبب مايزال موجوداً بكميات كبيرة جداً أي بحوالي 99 % وإن اليورانيوم 235 يشكل حوالي 0.7 % من اليورانيوم المتبقي والذي وجد طبيعياً بينما اليورانيوم 234 نادر جداً وقد تشكل عن طريق انحلال يورانيوم 238 (مر اليورانيوم 238 بمراحل عديدة أو اضمحلال ألفا وبيتا لتشكل نظائر مشعة مستقرة وإن اليورانيوم 234 هو وصلة في هذه السلسلة) وإن لدى يورانيوم 235 قدرة مثيرة تجعلها مفيدة في إنتاج الطاقة النووية وفي إنتاج القنبلة النووية وإن اليورانيوم 235 ينحل طبيعياً مثل يورانيوم 238عن طريق إشعاع ألفا ويمر يورانيوم 235 أيضاً بالانقسام التلقائي في نسبة مئوية صغيرة من الزمن.
على أي حال فإن يورانيوم 235 أحد بعض المواد التي يمكن أن تمر بالانقسام المستحث، إذا قام نيوتروناً بالمرور عبر نواة اليورانيوم 235 ستقوم النواة بامتصاص النيوترون بدون تردد وسيصبح غير مستقر ومنقسم فوراً.

الانقســــــــــام النــــــــــــووي
عندما تؤسر نواة النيوترون تنقسم إلى ذرتين خفيفتين وتقذفان اثنان أو ثلاثة من النيوترونات الجديدة (يعتمد عدد النيوترونات المقذوفة على طريقة انقسام ذرة اليورانيوم 235) تقوم بعد ذلك الذرتين الجديدتين ببعث إشعاع غاما عندما تستقران في وضعياتهما الجديدة.
هناك ثلاثة أمور حول عملية الانقسام المستحثة هذه والتي تجعلها هامة بشكل خاص:
ـ إن احتمال أسر اليورانيوم 235 النيوترون أثناء مروره عالي جداً وإن المفاعل الذي يعمل بشكل صحيح ( المعروف بالحالة الحرجة) يقذف نيوترون واحد من كل انقسام وبالتالي يتشكل انقسام آخر.
ـ إن عملية أسر النيوترون والانقسام يحدثان بسرعة كبيرة (1 × 10 – 12 ثانية).
ـ تصدر كمية هائلة من الطاقة على شكل حرارة وإشعاع غاما عند انقسام ذرة وحيدة وإن الذرتان اللتان تصدران عن الانقسام تصدران إشعاع بيتا وتملكان إشعاع غاما أيضاً.
الطاقة التي تصدر عن الانقسام الوحيد يأتي في الحقيقة من الانقسام ومن النيوترونات سوياً وهي تزن أقل من ذرة اليورانيوم 235 الأصلي والاختلاف في الوزن حول مباشرة إلى طاقة وهو يصدر شيء على غرار 7200 Me (مليون فولط الكتروني) وذلك عن طريق اضمحلال ذرة يورانيوم 235 واحدة وهناك الكثير من ذرات اليورانيوم في باون اليورانيوم.
إن باون اليورانيوم المخصب جداً يستعمل لتشغيل غواصة نووية أو حاملة طائرات نووية في كمية مساوية لغالون من الغازولين وإن حجم باون اليورانيوم أصغر من كرة بيسبول وحجم مليون غاز من الغازولين يملأ مكعب يبلغ حجمه 5 أقدام لكل جانب (أي بطول بناية ذات خمسة طوابق) وهنا يمكن أن يكون لديك فكرة عن كمية الطاقة المتوفرة في القليل فقط من يورانيوم 235 ولكي تعمل خواص اليورانيوم 235 هذه يجب أن تخصب عينة من اليورانيوم تحتوي 2 % إلى 3 % أو أكثر من يورانيوم 235 وإن تخصيب 3 % كافي لاستخدامه في مفاعل نووي مدني يستخدم لتوليد الطاقة ويجب أن يكون اليورانيوم المستخدم في الأسلحة بنسبة 90 % أو أكثر من يورانيوم 235.

داخل محطة الطاقة النووية
أنت تحتاج إلى بعض اليورانيوم المخصب بشكل معتدل لبناء مفاعل نووي ويحول اليورانيوم نموذجياً إلى كريات صغيرة يماثل قطرها الدايم (عملة العشر سنتات) ويبلغ طولها بوصة تقريباً وترتب هذه الكريات الصغيرة على شكل قضبان طويلة وتجمع هذه القضبان سوياً في حزم وتغمس هذه الحزم في الماء داخل وعاء ضغط وهنا يكون دور الماء كمحلول تبريد ولكي يتمكن المفاعل النووي من العمل يجب أن تكون الحزمة المغمورة بالماء في مرحلة فوق الحرجة قليلاً وهذا يعني بأن ترك اليورانيوم لأدواته الخاصة سيؤدي إلى السخونة والذوبان في آخر الأمر ولمنع حدوث هذا ركبت أذرع تحكم مصنوعة من مواد تمتص النيوترون وتأخذها إلى الحزمة باستخدام تقنية تمكن من رفع وإنزال أذرع التحكم وهذا يسمح للمشغلين بالسيطرة على نسبة التفاعل النووي، وعندما يريد المشغل من قلب اليورانيوم أن ينتج حرارة أكثر ترفع القضبان عن كتلة اليورانيوم وعندما يريد إنتاج حرارة أقل تخفض القضبان إلى كتلة اليورانيوم ويمكن خفض القضبان بالكامل إلى كتلة اليورانيوم لإغلاق المفاعل في حال وقوع حادث أو لتغيير الوقود.
تقوم حزمة اليورانيوم بالعمل كمصدر طاقة عالي جداً من الحرارة حيث يقوم بتسخين الماء وتحويله إلى بخار ويقوم البخار بنقل توربين البخار الذي يسرع المولد على إنتاج الطاقة ويقوم البخار المفاعل في بعض المفاعلات بالمرور بمبدل حرارة ثانوي متوسط وذلك لتحويل حلقة أخرى من الماء إلى بخار وإن الفائدة من هذا التصميم هي بأن الماء المشع البخار لا يصل التوربين أبدا ًوفي بعض المفاعلات أيضاً يكون السائل المبرد المتصل مع قلب المفاعل غازاً (ثاني أكسيد الكربون) أو معدن سائل(صوديوم، بوتاسيوم) وتسمح هذه الأنواع للمفاعل بتشغيل قلب اليورانيوم في درجات حرارة أعلى.
الخطأ الذي يمكن أن يحدث خارج المحطة
عندما تجتاز المفاعل بحد ذاته يكون هناك اختلافاً بسيطاً بين محطة طاقة نووية وبين محطة توليد الطاقة بالفحم المشتعل أو بالنفط المشتعل ما عدى مصدر الحرارة الذي يستخدم لإنشاء البخار.

تأتي الكهرباء للمنازل وللمكاتب من هذا المولد في محطة
شيرون هاريس التي تنتج 780 ميغاواط

أنابيب نقل البخار لتزويد المولد بالطاقة في محطة توليد الطاقة

إن وعاء المفاعل الضاغط موضوع في بطانة إسمنتية التي تعمل كوقاية إشعاعية وإن هذه البطانة موضوعة داخل وعاء احتواء كبير جداً ويحتوي هذا الوعاء على قلب المفاعل وعلى أجهزة مثل الرافعات …الخ التي تسمح للعمال في المحطة بتزويد الوقود وإبقاء عمل المفاعل وقد وضع وعاء الاحتواء الفولاذي هذا لمنع تسرب أي غازات أو سوائل مشعة من المحطة وأخيراً إن وعاء الاحتواء محمي ببناء إسمنتي خارجي قوي بما فيه الكفاية ليحميه من بعض الأشياء كتحطم طائرة نفاثة فيه، وإن أبنية الاحتواء الثانوية هذه ضرورية لمنع هروب إشعاع بخار مشع في حال وقوع حادث وإن عدم وجود أبنية الاحتواء الثانوية هذه في محطات الطاقة النووية الروسية سمحت للمواد المشعة بالهروب في حادث تشرنوبيل.

يتصاعد الدخان من برج التبريد في محطة هاريس


عمال المراقبة في غرفة التحكم في محطة الطاقة النووية
يعملون على مراقبة عمل المفاعل النووي

إن يورانيوم 235 ليس الوقود الوحيد الممكن استخدامه في محطة الطاقة، هناك مادة انقسامية أخرى هي بلوتونيوم 239 التي يمكن أن تنشأ بسهولة عن طريق دمج يورانيوم 238 بنيوترون الشيء الذي يحدث دائماً في المفاعل النووي.
عندما تنقسم ذرة يورانيوم 235 تعطي نيوترونين أو ثلاثة نيوترونات (اعتماداً على طريقة الانقسام) وإذا لم يكن هناك ذرات يورانيوم 235 في المنطقة فستقوم النيوترونات الحرة بالطيران إلى الفراغ كأشعة نيوترون وإذا كانت ذرة اليورانيوم 235 جزء من كتلة اليورانيوم فسيكون هناك ذرات يورانيوم 235 أخرى قريبة عندها سيحدث أحد هذه الأمور الثلاثة:
ـ إذا قام نيوترون واحد فقط من النيوترونات الثلاثة من كل انقسام بضرب قلب اليورانيوم 235 وتسبب ذلك بالانقسام عندها ستكون كتلة اليورانيوم في حالة حرجة وستوجد الكتلة في درجة حرارة مستقرة ويجب أن يبقى المفاعل النووي في حالة حرجة.
ـ إذا قام أقل من نيوترون واحد من النيوترونات الحرة بضرب ذرة يورانيوم 235 عندها ستكون الكتلة في حالة حرجة فرعية وسينتهي الانقسام في الكتلة.
ـ إذا قام أكثر من نيوترون واحد من النيوترونات الحرة بضرب ذرة يورانيوم 235 ستكون الكتلة حينها في حالة حرجة قصوى وستقوم بالتسخين.
أراد مصمم القنبلة النووية من القنبلة أن تكون في حالة حرجة قصوى لذلك إن كل ذرات اليورانيوم 235 في الكتلة تنقسم في مايكرو ثانية (جزء من مليون من الثانية).
يحتاج قلب المفاعل النووي في المفاعل النووي لأن يكون في حالة حرجة قصوى بعض الشيء لكي يستطيع العاملين في المحطة من رفع وخفض درجة حرارة المفاعل النووي وتعطي أذرع التحكم العاملون طريقة لامتصاص النيوترونات الحرة وبهذا يمكن للمفاعل أن يبقى في مستوى حرج.
إن كمية اليورانيوم 235 في الكتلة (مستوى الإخصاب الإغناء) وشكل الكتلة يسيطران على الحالة الحرجة في العينة، تخيل بأن شكل الكتلة صفيحة رقيقة جداً ستقوم حينها معظم النيوترونات الحرة بالطيران إلى الفراغ بدلاً من ضرب ذرات اليورانيوم 235 لذلك فإن الجسم الكروي هو الشكل المثالي للكتلة وإن كمية اليورانيوم 235 التي يجب جمعها سوياً في الجسم الكروي للحصول على ردة فعل حرجة هي حوالي 2 باون (0.9 كيلوغرام) وهذه الكمية تدعى باسم الكتلة الحرجة وإن الكتلة الحرجة للبلوتونيوم 239 هي حوالي 10 أونسات (283 غرام).

ما الذي يمكن أن يسير بشكل غير صحيح
إن محطات الطاقة النووية المبنية بشكل جيد لديها فائدة كبيرة عندما يتعلق الأمر بتوليد الطاقة الكهربائية وهي نظيفة جداً بالمقارنة مع محطات توليد الطاقة عن طريق الفحم المشتعل وإن محطات الطاقة النووية عبارة عن حلم أصبح حقيقة من الجهة البيئية وإن محطة توليد الطاقة بالفحم المشتعل يصدر نشاط إشعاعي إلى الجو أكثر من محطة طاقة نووية تعمل بشكل جيد وإن محطات الفحم المشتعل تطلق الأطنان من الكربونات والكبريت وعناصر أخرى في الجو.

مشاكل جديرة بالذكر في محطات الطاقة النووية
ـ إن التنقيب عن اليورانيوم وتنقيته ليست عملية نظيفة جداً.
ـ إن محطات الطاقة النووية التي تعمل بشكل غير صحيح يمكن أن تخلق مشاكل كبيرة وإن كارثة تشرنوبيل مثال جيد عن هذا الأمر حيث قامت هذه الكارثة ببعثرة الأطنان من الغبار المشع في الجو.
ـ إن الوقود المستهلك من محطات الطاقة النووية يبقى ساماً لقرون ولحد الآن لم توجد وسيلة خزن آمنة بشكل دائم لهذا الوقود.
ـ إن نقل الوقود من وإلى المحطات يوجد فيها بعض الخطورة.
قامت هذه المشاكل بالتأثير بشكل كبير على إنشاء محطات طاقة نووية جديدة في الولايات المتحدة.

تسلمين خيووووو

اقتباس المشاركة الأصلية كتبت بواسطة ريــ الشمال ــح مشاهدة المشاركة
تسلمين خيووووو

الله يسلمك..
شكرا ع مرورك الرائع

السلام عليكم ورحمة الله وبركاته,,

بارك الله فيج..

وتسلم يمناج..

ما قصرتي,,

وعليكم السلام ورحمه الله وبركاته

الله يسلمج

اشكرج ع مرورج الرائع

الحــــــــــــــــــــــمد لله

التصنيفات
الصف الرابع الابتدائي

طلب مشروع عن اللون و امتصاص الطاقة للصف الرابع

ابغي مشروع عن الون و امتصاص الطاقة بليييييييييييييييييييييييييز عليه درجات
*_^ &_*

آلسموح’ـهـٍ منّج .,. !

دورتلج ع’ـآلفآإضي .,. !

إنـً شآللهـٍ غ’ـييري مآيقصّر 🙂 .,. !

مشكووورة الغلى تعبتج وياي

السموحه ما حصلت

بس هالرابط يمكن يفيدج عن إمتصاص الطاقه

http://ar.wikipedia.org/wiki/%D8%A7%…A7%D9%82%D8%A9

والسموحه منج تم تغير العنوان ليتناسب مع فحوى الموضوع

بالتوفيق

وهذا عن اللون

اللون (بالإنكليزية: Colo(u)r): هو ما نراه عندما تقوم الملونات بتعديل الضوء فيزيائيا بحيث تراه العين البشرية (تسمى عملية الاستجابة) ويترجم في الدماغ (تسمى عملية الإدراك التي يدرسها علم النفس)[1]. واللون هو أثر فيزيولوجي ينتج في شبكية العين، حيث يمكن للخلايا المخروطية القيام بتحليل ثلاثي اللون للمشاهد، سواء كان اللون ناتجاً عن المادة الصباغية الملونة أو عن الضوء الملون. إن ارتباط اللون مع الأشياء في لغتنا، يظهر في عبارات مثل "هذا الشيء أحمر اللون"، هو ارتباط مضلل لأنه لا يمكن إنكار أن اللون هو إحساس غير موجود إلا في الدماغ، أو الجهاز العصبي للكائنات الحية.[2]

"إن أشعة الضوء بالمعنى الدقيق للكلمة ليست ملونة. لا يوجد في الأشعة سوى طاقة محددة وقدرة على تحريض الشعور بهذا اللون أو ذاك" (إسحاق نيوتن 1730)[1]
إن الإدراك اللوني يتأثر بمفهوم تاريخي طويل المدى وفق طبيعة وثقافة المشاهد، وأيضا مفهوم قصير المدى وهو الألوان المجاورة. (اقرأ أيضا علم النفس اللوني).

علم اللون يسمى أحيانا لونيات ويتضمن المقدرة على الإدراك الحسي للون بالعين البشرية، وأصل الألوان في المواد، ونظرية الألوان في الفن وأيضا فيزياء اللون في الطيف الكهرمغناطيسي.

فيزياء اللون

يوصف الإشعاع الكهرمغناطيسي بطول موجته وشدته. وعندما يقع طول موجة هذا الإشعاع ضمن المنطقة المرئية من الطيف (تقريبا من 380 نانومتر إلى 740 نانومتر)، يطلق عليه بالطيف المرئي.

تصدر معظم المنابع الضوئية ضوءًا ذا أطوال موجات متنوعة، وطيف المنبع هو عبارة عن توزيع لشدة المنبع عند كل طول موجي. ومع أن طيف الضوء الواصل إلى العين من اتجاه ما يحدد الإحساس اللوني في ذلك الاتجاه، فإنه يوجد العديد من ظواهر الاندماج الطيفي التي تغير هذا الإحساس اللوني. وقد يعرّف أحدنا اللون على أنه كل مدى من الطيف الذي يزيد من الإحساس اللوني نفسه، مع أن هذا المدى الطيفي يمكن أن يتغير كثيرًا بين الأجسام المختلفة، وبنحو أقل بين المراقبين المختلفين. وتسمى أعضاء كل مدى طيفي بمتلاونات (****mers) اللون المنظور

الألوان الطيفية

تتضمن ألوان الطيف المعروفة والمشاهدة في قوس قزح جميع الألوان التي يولدها الطيف المرئي وحيد طول الموجة، وتسمى ألوان وحيدة طول الموجة (بالإنكليزية: monochromatic) أو ألوان طيفية خالصة(بالإنكليزية: pure spectral colors). يظهر الجدول جانبًا الترددات التقريبية (التيراهرتز)، وأطوال الموجات (نانومتر) لألوان الطيف الخالصة المختلفة. علمًا أن أطوال الموجات قيست في الفراغ (اقرأ الانكسار).

يجب أن لا يفهم جدول الألوان على أنه قائمة محددة، فألوان الطيف الخالصة تشكل طيفا مستمرا، وطريقة فصل الطيف إلى ألوان محددة يتأثر بالثقافة والذوق واللغة (اقرأ علم النفس اللوني). حددت القائمة بستة ألوان أساسية: أحمر، برتقالي، أصفر، أخضر، أزرق، بنفسجي. قام إسحق نيوتن بتحديد سبعة ألوان حيث أضاف اللون النيلي بين الأزرق والبنفسجي، ولكن معظم الناس لا يستطيعون تمييزه، كما أن معظم علماء الألوان لم يميزوه كلون منفصل، ويشار إليه في بعض الأحيان بالطول الموجي 420-440 نانومتر.

يمكن لشدة اللون الطيفي أن تغير الإحساس به إلى حد بعيدة، فمثلا، اللون البرتقالي – الأصفر ذو الشدة المنخفضة يبدو بنيا، كما يبدة اللون الأصفر- الأخضر ذو الشدة المنخفضة أخضرا زيتونيا.

هذه الألوان هي التي يتم تذكرها بمعرفة معظم أطفال المدارس عن طريق الحروف الأولى من كل لون "في اللغة الإنجليزية". وقد اختار نيوتن هذه الألوان السبعة لأنه كان يعتقد بأن كل لون يقابل درجة من درجات السلم الموسيقة. وبعد ذلك بكثير تم اكتشاف أن الألوان وطبقات الموسيقي يتضمنان ترددات طيف، ولكن لا يوجد بينهما علاقة أعمق من ذلك.

يكون السطح الذي يشتت كل إنعكاسات الأطوال الموجية بتساوي يشاهد على أنه أبيض، بينما السطح الأسود يمتص كل الطوال الموجية ولا يعكسها. (بالنسبة للمرآة الإنعكاس يكون مختلف، فإن المرآة السليمة تعكس أيضا كل الأطوال الموجية بالتساوي، ولكن لا تشاهد على أنها بيضاء، حيث أن الجسم الأسود اللامع يعكسها)

لون الجسم

يتوقف لون الجسم على كل من فيزيائية الجسم في محيطه، وخصائص إدراك العين والدماغ. يمكن القول أن لون الأجسام هو لون الضوء "الصادر" من سطوحها، والذي يعتمد عادة على طيف الضوء الساقط وخصائص الانعكاس على سطوح الجسم، بالإضافة إلى التأثير المحتمل لزاوية الإضاءة وزاوية المشاهدة. بعض الأشياء لا تعكس الضوء فسحب، بل تنقله أيضا أو تصدره بنفسها، وعلى هذا تسهم في اللون أيضا. ولا يعتمد إدراك المشاهد للون الجسم على الطيف الضوئي الصادر من سطحه فحسب، بل يعتمد أيضا على مجموعة كبيرة المهارات المكتسبة، بحيث يميل اللون إلى إدراكه بوجه ثابت نسبيا: أي باستقلال عن طيف الإضاءة، وزاوية المشاهدة، إلخ. يعرف هذا التأثير بثباتية اللون (بالإنجليزية: color constancy‏).

يمكن استخلاص بعض القوانين العامة من الفيزياء، مع تجاهل التأثيرات الإدراكية الآن:

إن الضوء الساقط على سطح معتم إما أن ينعكس بطريقة متناظرة مرآوية (كما في الانعكاس على سطح المرآة)، أو يستطير (يتشتت) (أي تنعكس مع تشتت وانتشار)، أو يمتص، أو مزيج من هذه الظواهر الفيزيائية.
يحدد لون الأجسام المعتمة التي لا تعكس الضوء بطريقة مرآوية (ذات السطوح الخشنة) بتشتت مختلف لأطوال موجات الضوء وامتصاص الضوء غير المتشتت. وإذا شتتت الأجسام جميع الأطوال الموجية، تظهر بيضاء. وإذا امتصت جميع الأطوال الموجية، تظهر سوداء.
الأجسام المعتمة التي تعكس الضوء ذا الأطوال الموجية المختلفة بطريقة مرآوية وبفعالية مختلفة تظهر مثل المرايا الملونة بألوان تحدد وفق هذه الفعاليات. فالأجسام التي تعكس بعض الضوء الساقط وتمتص الباقي قد تبدو سوداء ولكن قد تبدو عاكسة بنحو ضعيف، مثل الأجسام السوداء المطلية بطبقات من اللك.
الأجسام التي تمرر الضوء إما أن تكون شفانية (بالإنجليزية: translucent‏) (تشتت الضوء النافذ) أو شفافة (بالإنجليزية: transparent‏) (لا تشتت الضوء النافذ). إذا امتصت الأجسام (أو عكست) الضوء عند أطوال موجية بطريقة متفاوتة، فإنها تظهر مصبوغة بلون يتحدد بطبيعة ذلك الامتصاص (أو ذلك الانعكاس).
يمكن للأجسام أن تصدر ضوءا ذاتيًا، بدلا من مجرد نقل أو عكس الضوء. وقد يحدث ذلك بسبب حرارتها المرتفعة (يقال عن الأجسام حينئذ أنها متوهجة (بالإنجليزية: incandescent‏))، كنتيجة لبعض التفاعلات الكيميائية (وهي ظاهرة تسمى بالتألق الكيميائي (بالإنجليزية: chemoluminescence‏))، أو لأسباب أخرى (اقرأ مقالات الفسفورية (بالإنجليزية: Phosphorescence‏) وقائمة المنابع الضوئية).
يمكن للأجسام أن تمتص الضوء ومن ثم تصدره بخصائص مختلفة. وتسمى عندها بالمواد الفلورية (إذا كان الضوء المنبعث فقط خلال فترة امتصاص الضوء) أو الفسفورية (إذا كان انبعاث الضوء مستمر حتى بعد توقف الامتصاص. قد يطلق هذا المصطلح بوجه غير دقيق على الضوء المنبعث بسبب التفاعلات الكيميائية). إن لون الأجسام هي نتيجة معقدة لخصائص السطح، وخصائص النفاذية، وخصائص الإصدار، فجميع هذه العوامل تؤثر على مزيج الأطوال الموجية في الضوء المغادر لسطح الجسم. فالإحساس اللوني يتكيف مع طبيعة الإضاءة المحيطة، وخصائص لون الأجسام القريبة، بتأثير يسمى الثبات اللوني (بالإنكليزية: Color constancy) والخصائص الأخرى للعين والدماغ.

الألوان الطيفية مقابل الألوان غير الطيفية

معظم مصادر الضوء ليست مصادر طيف نقية, على أنها غالبا ما تكون نتيجة لخليط من الأطوال الموجية وشدتها للضوء. وللعين البشرية, فإنه يوجد هناك فئة كبيرة من الطيف المختلط للضوء الذي يمكن الإحساس بها مثل الإحساس بالطيف النقي للون. بالنظر للجدول السابق, مثلا عندما توضح شاشة الحاسوب اللون البرتقالي فهذا لا يعنى أن الشاشة ينبعث منها الضوء حول الطول الموجي 600 نانو متر (وهو الشيء الذي لا تستطيع عمله معظم الشاشات). ولكن الذي يحدث أنه ينبعث منها خليط من جزئين من اللون الأحمر وجزء من اللون الأخضر. وعند طباعة الصفحة على طابعة ألوان, فإن المنطقة البرتقالية على الورقة. عند تعرضها للضوء الأبيض, فإنها سوف تعكس طيف أخر مستمر. ولا يمكن لنا أن نلاحظ هذه الفروق (بالرغم من أن بعض الحيونات تستطيع ذلك) والسبب يرجع للصبغة "الملونات" التي تنبه خلايا الإبصار (شاهد بالأسفل).

يوجد تعريف مفيد لهذه الظاهرة وهو الطول الموجي الغالب والذي يطابق الطول الموجي لطيف الضوء مع المصدر الغير طيفي الذي يبعث نفس الإحساس باللون. ويعتبر الطول الموجي الغالب هو الأساس الرسمي للتصور المشهور لصنف اللون "هيو".

بالإضافة لمصادر الضوء العديدة التي تظهر كألوان طيف نقية ولكنها خليط, يوجد عديد من الالوان التي عند تعريفها لا تكون ألوان طيف نقية نظرا لعدم التشبع أو لأنها أرجوانية (وهو لون لا يظهر في طيف نيوتن النقي). وبعض الأمثال للألوان الغير طيفية هي الألوان اللا لونية (الأسود, الرمادي, الأبيض) والألوان الأخرى مثل القرنفلي, قمحي, أرجواني -شاهد تماثل الألوان لمقدمة أساسية عن كيفية صعوبة مطابقة الألوان

اللون في المعادلة الموجية

المعادلة الموجية تصف تصرف الضوء وبالتالى يمكن وصف طيف اللون بالمفاهيم الحسابية للخواص الناتجة من حل المعادلة الموجية. عموما, لفهم كيفية أن الإحساس بلون معين ينتج من طيف فيزيائي معين فإن ذلط يتطلب معلومات عن وظائف شبكية المشاهد. وللتبسيط فالمعادلة القادمة للضوء الذي يسير في الفراغ:

حيث الرموز السفلى توضح المشتقات الجزئية و c هي سرعة الضوء. ولو قمنا بتثبيت (x,y,z) كنقطة في الفراغ ونظرنا على الحل كدالة في t نحصل على إشارة. ولو أخذنا تحول فورير لهذه الإشارة نحصل على تحليل للتردد كما تم وصفه بالأعلى. وكل تردد له سعة وحالة. وعند ضرب التردد بقيمة ثابت بلانك h يمكن تحديد طاقة الفوتون. ومربع السعة يمثل الشدة, وهي كمية الطاقة المنقولة في الثانية خلال وحدة المساحة لسطح عمودي على مصدر انبعاث الضوء. ومعلومات الحالة غامضة أكثر لأنه من الصعب قياسها ودراستها. فلا يمكن للإنسان أن يحس بتأثير الحالة على الضوء إلا في حالات خاصة للتداخل (مثلا شاهد بصريات الطبقات الرفيعة حيث يؤدى تأثير الحالة إلى تغييرات محسوسة في السعة. ومعظم الضوء له توزيعات حالة عشوائية, ولكن اللايزر مثلا يكون أكثر فاعلية, عندما تكون الفوتونات لها نفس الحالة.

مشاهدة اللون

بالرغم من أن الحالة الدقيقة للون حاليا تقع تحت الجدال الفلسفي, فإن اللون قابل أيضا للجدال من الناحية السيكوفيزيائية التي تقع فقط في أدمغتنا (شاهد كوالا). التفاحة الحمراء لا تعطى ضوء أحمر, وهذا يؤدى بالطبع لسوء فهم عند التفكير في الأشياء التي نراها, أو الضوء نفسه, إذا ما كان ملون أم لا. كما أن التفاحة ببساطة تمتص الضوء بأطوال موجية مختلفة ويشع عليها بدرجات متفاوتة, بالطريقة التي تجعل الضوء الغير ممتص ينعكس ليعطى الإحساس ابللون الأحمر. التفاحة سببت الإحساس باللون الأحمر فقط لأن رؤية اللون بالعين البشرية يحس بالضوء الذي له أطوال موجية مختلطة بطريقة مختلفة – ونحن لدينا لغة لوصف هذا الإختلاف.

في عام 1931 قامت مجموعة من الخبراء الدوليين يطلق عليها اسم هيئة الإضاءة الدولية (Commission Internationale d’Eclairage CIE) بتطوير طريقة حسابية لنموذج اللون. وكانت الفرضيات التي إستخدمتها الهيئة CIE أن اللون هو اتحاد لثلاث أشياء: مصدر ضوء, جسم, مشاهد. وقامت الهيئة CIE بالتحكم بشدة في هذه المتغيرات في تجربة أنتجت القياسات لهذا النظام.

بالرغم من أن أريستول والعلماء القدماء الأخرون إفترضوا أن أصل الضوء تسبب رؤية اللون, حتى قام نيوتن بتعريف أن الضوء هو مصدر الإحساس باللون. وقام جوته بدراسة نظرية اللون, وفى عام 1801 إقترح توماس يونج نظرية ثلاثي اللون, والتي تم تنقيتها لاحقا بمعرفة هيرمان فون هيلمهولتز. هذه النظرية تم تأكيد صحتها في فترة الستينات من القرن العشرين وسيتم شرحها لاحقا.

شبكية العين البشرية تحتوى على ثلاث أنواع خلايا مختلفة يمكن أن تلاحظ اللون أو خلية المخروط (بالشبكية). نوع منهم مختلف نسبيا عن النوعين الأخرىن, ويستجيب أكثر للضوء البنفسجي الذي نستقبله, والذي له طول موجي يتراوح حول 420 نانو متر (الخلايا المخروطية من هذا النوع يطلق عليها أحيانا خلايا الطول الموجي القصير, خلايا مخروطية S, وأحيانا الخلايا المخروطية الزقاء). النوعين الأخرىن متقاربين جينيا, وكيميائيا وفى الإستجابة أيضا, وكلاهما يكون حساس للون الأخضر أو المخضر. أحد هذين النوعين (يسمى أحيانا خلايا الطول الموجي الطويل, خلايا مخروطية L,وأحيانا الخلايا المخروطية الحمراء) وهي حساسة للضوء الذي نحسه كأصفر أو أصفر-مخضر, وله طول موجي حول 564 نانو متر. النوع الأخر (يسمى أحيانا خلايا الطول الموجي المتوسط, خلايا مخروطية M,وأحيانا الخلايا المخروطية الخضراء) وتكون حساسة للضوء الذي نحسه كأخضر, وله طول موجي حول 534 نانو متر. المصطلح "الخلايا المخروطية الحمراء" للخلايا التي تحس بالأطوال الموجية الطويلة لا يفضل استخدامه نظرا لأن هذا النوع يستجيب كحد أقصى للضوء الذي نستقبله كمخضر, بالرغم من أن الطول الموجي للضوء الأطول من ذلك والذي أخر مداه أن يثير الخلايا متوسطة الطول الموجي "الخضراء".

منحنيات الإحساس للخلايا المخروطية تقريبا تشبه شكل الجرس, وتتداخل إلى حد معقول. وعلى هذا فإن الإشارة الطيفية القادمة يتم تقليلها بالعين إلى ثلاث قيم, ويسى ذلك أحيانا قيم الباعث الثلاثية وتمثل شدة الإستجابة لكل نوع من أنواع الخلايا المخروطية.

بسبب التداخل بين مدى الحساسية, فإن بعض تداخلات الإستجابة للثلاث أنواع من الخلايا لا يمكن أن تحدث, بغض النظر عن نوع تحفيز الضوء. فمثلا لا يمكن تحفيز الخلايا متوسطة الطول الموجي/"الأخضر" فقط, يجب تحفيز الخلايا الأخرى لدرجة ما في نفس الوقت, حتى لو تم استخدام ضوء له طول موجي واحد(متضمنا الطول الموجي الأقصى الذي يمكن أن تحس به أي من الخلايا). مجموعة كل قيم الباعث الثلاثية الممكنة تحدد الفراغ اللوني البشري. وقد تم حساب أن الإنسان يمكن أن يفرق بالتقريب بين 10 مليون درجة لون مختلفة, بالرغم من أن تعريف لون معين صعب للغاية, حيث ان كل عين في نفس الشخص يمكن أن تستقبل اللون بإختلاف بسيط. وهذا سيتم مناقشة بالتفصيل لاحقا.

نظام صف الألوان (والذي تعتمد عليه الرؤية في الضوء المنخفض بشدة) لا يمكن الإحساس بوجود اختلاف في الطول الموجي, وعلى هذا لا يمكن تطبيقه في رؤية اللون. ولكن التجارب وضحت أنه في بعض الظروف الثانوية فإن الإتحاد بين الحث في نظام صف الألوان والحث في الخلايا المخروطية يمكن أن ينتج حيود في الأحساس باللون بطريقة غير التي تم شرحها بالأعلى.

بينما أن آلية رؤية اللون بالخلايا المخروطية في مستوى الخلايا بالشبكية يوصف جيدا بوحدات الباعث الثلاثي (شاهد بالأعلى), فإن الإحساس باللون وتمييزه فوق هذا المستوى الأساسي يتم تنظيمه بطريقة مختلفة. النظرية الغالبة لآلية إحساس الأعصاب برؤية اللون تفترض ثلاث عمليات متعاكسة أو قنوات متعاكسة, موجودة خارج النظام المدخلات الأصلية للخلايا المخروطية, قناة أحمر-أخضر, قناة أزرق-أصفر, قناة أسود-أبيض ("التألق"). وهذه النظرية تؤخذ في الإعتبار أحيانا في تركيب موضوعنا عن خبرة اللون (شاهد التوضيح بالأسفل). الأزرق والأصفر يعتبرا ألوان مكملة أو متعاكسين, فلا يمكن ملاحظة لون أزرق مصفر (أو أحمر مخضر), كما لا يمكن ملاحظة بريق للظلام أو سخونة للبرد. الأربعة "أقطاب" للألوان المقترحة في العمليات المتعاكسة بخلاف الأسود والأبيض, لها أحقية طبيعية لأن يطلق عليها ألوان أساسية. وهذا بالتنافس مع المجموعات المختلفة للثلاث ألوان الأساسية المقترحة "كمولدات" لكل الألوان التي يشعر بها الإنسان (شاهد بالأسفل).

المصدر

معهد الإمارات التعليمي
ويكيبيديا
قوقل

بالتوفيق

السلآلآم عليكم…

الغالية اللي فوقي ما قصرت..

ربي يعافيها ويسلمها..

بالتوفيق يارب..

إمآإرآإتيهـٍ مآقصّرت 🙂

ربي يح’ـفظهآإ .,. !

بآلتوفييج .,. ~

اوية مشكورين الحين اتاكدت انكم اتحبوني

ههههههههههههههههههههههههههههههه

سبحان الله و بحمده

التصنيفات
الصف السادس

تقرير: سيارة تعمل بالطاقة الشمسية للصف السادس

اول سيارة في العالم تعمل بالطاقة الشمسية

قال لويس بالمر المصمم السويسري، لاول سيارة تعمل بالطاقة الشمسية في العالم , ان يتم انتاج سيارات صديقة للبيئة تعمل علي اشعة الشمس وباسعار لاتتجاوز الستة الاف يورو .
وقال في مؤتمر صحافي عقده في فندق هيلتون ابوظبي امس انه يحمل رسالة الي دول العالم التي يزورها بسيارته التي تعمل بالطاقة الشمسية مفادها / حول العالم بقوة الشمس فقد حان وقت التغيير لبيئة أنظف.
وابدي ارتياحه لوصوله الي ابوظبي ضمن جولته العالمية التي بدأها من مدينة لوزان في الثالث من يوليو 2022، والتي ستستمر 16 شهرا يطوف خلالها خمس قارات زائرا 50 دولة و400 مدينة، منها مدن في دول خليجية ومغاربية عربية، مبشرا بطريقة عملية وبمثال حي بأن بالإمكان إحداث تغيير من أجل الحد من الآثار الضارة للانبعاث الحراري، وغاز ثاني أكسيد الكربون.
واوضح ان سيارته الشمسية،التي صممها بنفسه والتي يطلق عليها اسم التاكسي الشمسي (سولار تاكسي) ذات مقعدين تستمد دفعها من الطاقة الشمسية من مسطح مقطور خلفها. ودينمو العربة، أو قلبها، يتكون من بطارية /زبرا/ مما يسمح بقيادتها حتى في الظلام. ويمكن أن تصل سرعتها إلى 90 كيلومترا في الساعة. ويعود إنتاجها إلى تعاون مشترك بين شركات وجامعات سويسرية، بالإضافة لوحدة أبحاث طاقة شمسية ألمانية.
واوضح بالمر أن سيارته تعتبر انطلاقة قوية عملية للبدء في التغيير الضروري للقضاء على آثار التلوث الذي تبعثه السيارات، مشيرا إلى أن هذه السيارة بأكملها يمكن إعادة تدويرها، وأنها لا تحتوي على أي مواد سامة، كما لا تنفث أي غازات أو أصوات، أي أنها لا تشارك في تلوث البيئة بأي نوع من أنواع التلوث .
وقال انه لم يواجه اية عقبات حتي الان في جولته التي مر خلالها بألمانيا وجمهورية التشيك والنمسا وسلوفاكيا وهنغاريا ورومانيا وصربيا وبلغاريا وتركيا وسورية و الأردن والسعودية والإمارات ويعتزم القيام بزيارة الي الهند بعد ابوظبي مرورا بعدد من الدول الاسيوية انتهاء باليابان .
ويدعم بالمر في رحلته الشؤون الخارجية السويسرية وبرنامج الأمم المتحدة للعناية بالبيئة ووزارة البيئة .
وأشار إلى أن كلفة صناعة السيارة الشمسية في الصين لا تزيد على ستة آلاف يورو، وهو رقم توقع بالمر أن يتناقص كثيرا، في حال اعتمدت السيارة كخيار جماهيري وانتشرت فكرتها.

منقووول

يزاج الله خير

السلام عليكم ورحمة الله وبركاته
.
.
تسلم الايادي
بوركت جهودج
.
.
شكرا لج

لا الـــه الا الله

التصنيفات
الصف التاسع

تلخيص الطاقة الصف التاسع للصف التاسع

تلخيص: الطاقـــة..

تعريف الطاقة: هي المقدرة على بذل شغل.
وتقاس بوحدة الجول (J).

طاقة الحركة: طاقة ناتجة عن الحركة

(KE): طاقة حركة
(m): كتلة الجسم
(v): سرعة الجسم

كلما كانت سرعة الجسم أكبر كانت طاقة حركته أكبر. وكلما كانت كتلة الجسم المتحرك أكبر كانت طاقة حركته أكبر.

طاقة الوضع: الطاقة الموجودة لدى أي جسم بسبب موقعة أو شكله أو ظروفه.

طاقة الوضع الجذبية= الوزن × الارتفاع

الطاقة الميكانيكية= طاقة الوضع + طاقة الحركة
ME = PE + KE

الطاقة الحرارية والطاقة الكهربائية والطاقة الصوتية هي صور للطاقة الحركية.
أما الطاقة الضوئية والطاقة النووية والطاقة الكيميائية هي صور للطاقة الوضع

تحول الطاقة: تغير للطاقة من شكل إلى شكل آخر

تحولات الطاقة الكهربائية.
في المنبه إلى طاقة صوتية.
في المصباح إلى طاقة ضوئية وحرارية.
في السشوار إلى طاقة حركة وطاقة صوتية وطاقة حرارية.

السلام عليكم ورحمة الله وبركاته..

يعطيك العافية اخوي..

ما قصصرت

ما شاء الله عليك
بن توير

نشيط و تساعد الاخرين نتريا المزيد منك و عقبال نشوفك مشرف ان شاء الله

أستغفرك يا رب من كل ذنب

التصنيفات
الصف الثامن

بحث عن الطاقة (ف2) للصف الثامن

طاقة

البرق أحد أكثر الأشكال المعروفة لانتقال الطاقة .ابحث عن طَاقَة في
ويكاموس، القاموس الحر.الطاقة هي المقدرة على القيام بعمل ما (أى إحداث تغيير) ، وهناك صور عديدة للطاقة، يتمثل أهمها في الحرارة و الضوء.

ضمن الاستخدام الاجتماعي : تطلق كلمة "طاقة" على كل ما يندرج ضمن مصادر الطاقة ، إنتاج الطاقة ، و استهلاكها و أيضا حفظ موارد الطاقة. بما ان جميع الفعاليات الاقتصادية تتطلب مصدرا من مصادر الطاقة ، فإن توافرها و أسعارها هي ضمن الاهتمامات الأساسية و المفتاحية . في السنوات الأخيرة برز استهلاك الطاقة كاحد أهم العومل المسببة و المتعلقة بالاحترار العالمي global warming مما جعلها تتحول إلى قضية أساسية في معظم دول العالم .

ضمن سياق العلوم الطبيعية ، الطاقة يمكن ان تاخذ أشكالا متنوعة : طاقة حرارية ، كيميائية ، كهربائية ، إشعاعية ، نووية ، و اخيرا كهرومغناطيسية .. الخ . هذه الأنواع الطاقية تصنف عادة بكونها طاقة حركية أو طاقة كامنة ، مع أن بعض انواع الطاقة تقاوم مثل هذا التصنيف مثلا : الضوء ، في حين أن انواع أخرى من الطاقة كالحرارة يمكن أن تكون مزيجا من الطاقتين الكامنة و الحركية .

العديد من انواع الطاقة هذه يمكن تحويلها Transformation من شكل لآخر بمساعدة ادوات بسيطة او تقنيات معقدة : من الطاقة الكيميائية إلى الكهربائية عن طريق الأداة الشائعة البطاريات أو المدخرات ، ضمن سياق نظرية النسبية بدمج مجالي المادة و الطاقة معا بحيث أصبح من الممكن ان تتحول الطاقة إلى مادة و بالعكس تحول المادة إلى طاقة : هذا الكشف الجديد عبر عنه بمعادلته الشهيرة E=mc2 ، هذا التحول ترجم عمليا عن طريق الحصول على الطاقة بعمليات الانشطار النووي أو الاندماج النووي

مصطلحات الطاقة و تحولاتها مفيدة جدا في شرح العمليات الطبيعية . فحتى الظواهر الطقسية مثل الريح ، و المطر و البرق و الأعاصير tornado تعتبر نتيجة لتحولات الطاقة التي تأتي من الشمس على الأرض . الحياة نفسها تعتبر أحد نتائج تحولات الطاقة : فعن طريقة التمثيل الضوئي يتم تحويل طاقة الشمس إلى طاقة كيميائية ضمن النباتات ، يتم لاحقا الاستفادة من هذه الطاقة الكيميائية المختزنة في عمليات الاستقلاب ضمن الكائنات الحية غيرية التغذية .

تحول الطاقة
يمكن تحويل الطاقة من صورة إلى أخرى. فعلى سبيل المثال، يمكن تحويل الطاقة الكيميائية المختزنة في بطارية الجيب إلى ضوء.

كمية الطاقة الموجودة في العالم ثابتة على الدوام، فالطاقة لا تفنى ولا تستحدث من العدم ، وإنما تتحول من شكل إلى آخر. وعندما يبدو أن الطاقة قد استنفذت، فإنها في حقيقة الأمر تكون قد تحولت إلى صورة أخرى، لهذا نجد أن الطاقة هي قدرة المادة للقيام بالشغل (الحركة) كنتيجة لحركتها أو موضعها بالنسبة للقوي التي تعمل عليها. فالطاقة التي يصاحبها حركة يطلق عليها طاقة حركية، والطاقة التي لها صلة بالموضع يطلق عليها طاقة كامنة (جهدية أو مخزنة). فالبندول المتأرجح به طاقة جهدية في نقاطه النهائية، وفي كل أوضاعه النهائية له طاقة حركية وطاقة جهدية في أوضاعه المختلفة.

الطاقة توجد في عدة أشكال كالطاقة الميكانيكية، الحرارية، الديناميكية الحرارية، الكيميائية، الكهربائية، الإشعاعية، والذرية. وكل أشكال هذه الطاقات قابلة للتحويل الداخلي بواسطة طرق مناسبة. والطعام الذي نتاوله، به طاقة كيميائية يخزنها الجسم ويطلقها عندما نعمل أو نبذل مجهوداً.

أنواع الطاقة
تعتبر الطاقة الحيوانية أول طاقة استخدمها الإنسان في فجر الحضارة عندما استخدم الحيوانات الأليفة في أعماله ثم شرع واستغل قوة الرياح في تسيير قواربه لآفاق بعيدة. واستغل هذه الطاقة مع نمو حضارته، واستخدمها كطاقة ميكانيكية في إدارة طواحين الهواء وفي إدارة عجلات ماكينات الطحن ومناشير الخشب ومضخات رفع الماء من الآبار وغيرها. وهذا ما عرف بالطاقة الميكانيكية.

قوة الحيوانات نجدها مستمدة من الطاقة الكيميائية الموجودة في الطعام بعد هضمه في الإنسان والحيوان. والطاقة الكيميائية نجدها في الخشب الذي كان يستعمل منذ القدم في الطبخ والدفء. وفي بداية الثورة الصناعية استخدمت القوة المائية كطاقة تشغيلية من خلال حركية نظم سيور وبكر وتروس لإدارة العديد من الماكينات.

نجد الطاقة الحرارية في الآلات البخارية التي تحول الطاقة الكيميائية للوقود إلى طاقة ميكانيكية. فالآلة البخارية يطلق عليها آلة احتراق خارجي، لأن الوقود يحرق بالخارج لتوليد البخار الذي يدير الآلات من الداخل. لكن في القرن 19 إخترعت آلة الإحتراق الداخلي، مستخدمة وقودا يحترق داخل الآلة حسب نظام غرف الإحتراق الداخلي المباشر بها، لتصبح مصدرا للطاقة الميكانيكية التي أستغلت في عدة أغراض كتسيير السفن والعربات والقطارات.

في القرن 19 ظهر مصدر آخر للطاقة، لايحتاج لإحتراق الوقود، وهو الطاقة الكهربائية المتولدة من الدينامو (المولد). أصبحت هذه المولدات تحول الطاقة الميكانيكية لطاقة كهربائية التي أمكن نقلها إلي أماكن بعيدة عبر الأسلاك، مما جعلها تنتشر، حتى أصبحت طاقة العصر الحديث ولاسيما وأنها متعددة الأغراض، بعدما أمكن تحويلها لضوء وحرارة وطاقة ميكانيكية، بتشغيلها محركات الآلات والأجهزة الكهربائية. تعتبر طاقة نظيفة إلى حد ما.

ثم ظهرت الطاقة النووية التي استخدمت في المفاعلات الذرية، حيث يجري الإنشطار النووي الذي يولد حرارة هائلة تولد البخار الذي يدير المولدات الكهربائية أو محركات السفن والغواصات. لكن مشكلة هذه المفاعلات النووية تكمن في نفاياتها المشعة، واحتمال حدوث تسرب إشعاعي أو إنفجار المفاعل، كما حدث في مفاعل تشيرنوبل الشهير.

الطاقة الغير متجددة نحصل عليها من باطن الأرض كسائل كما في النفط، وكغاز كما في الغاز الطبيعي، أو كمادة صلبة كما في الفحم الحجري. وهي غير متجددة لأنه لايمكن صنعها ثانية أو استعواضها مجددا في زمن قصير، عكس الطاقة المتجددة. مصادر الطاقة المتجددة نجدها في طاقة الكتلة الحيوية التي تستمد من مادة عضوية كإحراق النباتات وعظام الحيوانات وروث البهائم والمخلفات الزراعية. فعندما نستخدم الخشب أو أغصان الأشجار أو روث البهائم في اشتعال الدفايات أو الأفران، فهذا معناه أننا نستعمل وقود الكتلة الحيوية التي تستغل كمادة عضوية من النباتات ونفايات الزراعة أو الخشب أو مخلفات الحيوانات. وفي الولايات المتحدة تستغل طاقة الكتلة الحيوية في توليد 3% من مجمل الطاقة لديها لتوليد 10 آلاف ميجا وات من القدرة الكهربائية.

وتستغل طاقة الحرارة الأرضية لتوليد الكهرباء والتسخين. حاليا نصف الطاقة المتجددة في الولايات المتحدة الأمريكية تأتي من قوة دفع المياه التي تدير التوربينات، والتي تسيّر االمحركات لتوليد الكهرباء، كما يحدث في مصر في السد العالي. وفي أمريكا تمثل كهرباء الطاقة المائية 12% من جملة الكهرباء. و يمكن مضاعفتها إلي 72 ألف ميجاوات.

هناك أيضا طاقة قوة الرياح حيث أن شفرات (ألواح) كبيرة تدور بالهواء فوق الأبراج بحركة مروحية، ومثبت بها مولدات كهرباء. كانت قوة الرياح تستغل في إدارة طواحين الهواء ومضخات رفع المياه، كما إتبع في هولندا عندما نزح الهولنديون مساحات مائية من البحر لتوسيع الرقعة الزراعية عندهم. سبب عدم إنتشارها في العالم أصواتها المزعجة وقتلها للطيور التي ترتطم بشفراتها السريعة، وعدم توفر الرياح في معظم المناطق بشكل مناسب.

أيضا في خلايا الطاقة التي هي خلايا وقود الهيدروجين تنتج الكهرباء من خلال تفاعل كهربائي كيميائي باستخدام الهيدروجين والأوكسجين.

مصادر الطاقة الطبيعية

بترول
البترول عبارة عن سائل كثيف، قابل للاشتعال، بني غامق أو بني مخضر، يوجد في الطبقة العليا من القشرة الأرضية. وأحيانا يسمى نافثا، من اللغة الفارسية ("نافت" أو "نافاتا" والتي تعني قابليته للسريان). وهو يتكون من خليط معقد من الهيدروكربونات، وخاصة من سلسلة ألكان، ولكنه يختلف في مظهره وتركيبه ونقاوته بشدة من مكان لأخر. وهو مصدر من مصادر الطاقة الأولية الهام للغاية (حسب إحصائيات الطاقة في العالم). البترول هو المادة الخام لعديد من المنتجات الكيميائية، بما فيها الأسمدة، مبيدات الحشرات، اللدائن.

وقود
الوقود له أنواع مختلفة من أهمها الوقود الحفري وهو الذي يشمل كل من النفط والفحم والغاز، والذي أستخدم بإسراف منذ القرن الماضي ولا يزال يستخدم بنفس الإسراف مع ارتفاع أسعاره يوما بعد يوم، مع أضراره الشديدة للبيئة. ومثله وقود السجيل وهو مثل النفط يكون مخلوط مع الرمال.

من أنواع الوقود الأخرى هو الوقود الخشبي والذي يغطي استخدامه حوالي 6% من الطاقة الأولية العالمية، وهناك الوقود المستخرج من النفايات الحيوانية أو المياه الثقيلة للمجاري، حيث بالمستطاع استخدام هذه النفايات في توليد الطاقة بالاعتماد عليها بعد عمليات التخمير، وتستخدم في العديد من دول العالم معالجة المياه الثقيلة للإستفادة من الغازات المنبعثة لأغراض توفير الطاقة.

من الطرق الحديثة والنظيفة في توفير الوقود النظيف يمكن أن يكون من نباتات الأشجار سريعة النمو، أو بعض الحبوب أو الزيوت النباتية أو المخلفات الزراعية أو بقايا قصب سكر، أمكن تحويل بعض منتجات السكر إلى كحول لاستخدامه كوقود للسيارات وكذلك زيت النخيل. يتميز هذا النوع من الوقود بأنه يقلل من التلوث، حيث لا حاجة هناك لاستعمال الرصاص في مثل هذا النوع من الوقود لرفع أوكتان الوقود كما هو الحال في البنزين المستحصل عليه من النفط الأحفوري، ومن ثم فإنه بنزين خال من الرصاص.

هناك الوقود النووي وتحطه الكثير من المشاكل والقوانين الضابطة والتي قد لا تخلو من ازدواجية في المعايير وإجحاف بالسماح لاستخدامها على البعض، إضافة لخطورة استخدامها وتأثيرها السيئ على البيئة.

طاقة شمسية
الطاقة الشمسية هي الطاقة الأم فوق كوكبنا، حيث تنبعث من أشعتها كل الطاقات المذكورة سابقاً لأنها تسير كل ماكينات وآلية الأرض بتسخين الجو المحيط واليابسة وتولد الرياح وتصريفها، وتدفع دورة تدوير المياه، وتدفيء المحيطات، وتنمي النباتات وتطعم الحيوانات. ومع الزمن تكون الوقود الإحفوري في باطن الأرض. وهذه الطاقة يمكن تحويلها مباشرة أو بطرق غير مباشرة إلى حرارة وبرودة وكهرباء وقوة محركة. تعتبر أشعة الشمس أشعة كهرومغناطيسية، وطيفها المرئي يشكل 49% منها، والغير مرئي منها يسمى بالأشعة الفوق البنفسجية ، ويشكل 2%، والأشعة دون الحمراء 49%.

الطاقة الشمسية تختلف حسب حركتها و بعدها عن الأرض، فتختلف كثافة أشعة الشمس وشدتها فوق خريطة الأرض حسب فصول السنة فوق نصفي الكرة الأرضية و بعدها عن الأرض و ميولها و وضعها فوق المواقع الجغرافية طوال النهار أو خلال السنة، وحسب كثافة السحب التي تحجبها، لأنها تقلل أو تتحكم في كمية الأشعة التي تصل لليابسة، عكس السماء الصحوة الخالية من السحب أو الأدخنة. وأشعة الشمس تسقط علي الجدران والنوافذ واليابسة والبنايات والمياه، وتمتص الأشعة وتخزنها في كتلة (مادة) حرارية Thermal mass. هذه الحرارة المخزونة تشع بعد ذلك داخل المباني. تعتبر هذه الكتلة الحرارية نظام تسخين شمسي يقوم بنفس وظيفة البطاريات في نظام كهربائي شمسي (الفولتية الضوئية). فكلاهما يختزن حرارة الشمس لتستعمل فيما بعد.

والمهم معرفة أن الأسطح الغامقة تمتص الحرارة ولا تعكسها كثيراً، لهذا تسخن. عكس الأسطح الفاتحة التي تعكس حرارة الشمس، لهذا لا تسخن. والحرارة تنتقل بثلاث طرق ،إما بالتوصيل conduction من خلال مواد صلبة، أو بالحمل convection من خلال الغازات أو السوائل، أو بالإشعاع radiation. من هنا نجد الحاجة لإنتقال الحرارة بصفة عامة لنوعية المادة الحرارية التي ستختزنه،, لتوفير الطاقة و تكاليفها. لهذا توجد عدة مباديء يتبعها المصممون لمشروعات الطاقة الشمسية، من بينها قدرة المواد الحرارية المختارة لتجميع وتخزين الطاقة الشمسية حتى في تصميم المباني واختيار مواد بنائها حسب مناطقها المناخية سواء في المناطق الحارة أو المعتادة أو الباردة. كما يكونون علي بينة بمساقط الشمس علي المبني والبيئة من حوله كقربه من المياه واتجاه الريح والخضرة ونوع التربة، والكتلة الحرارية التي تشمل الأسقف والجدران وخزانات الماء. كل هذه الإعتبارات لها أهميتها في إمتصاص الحرارة أثناء النهار وتسربها أثناء الليل.

مصادر الطاقة

تعريف الطاقة:

الطاقةهي أحد المقومات الرئيسية للمجتمعات المتحضرة .وتحتاج إليها كافة قطاعات المجتمع بالإضافة إلى الحاجة الماسة إليها في تسيير’ الحياة اليومية ، إذ يتم استخدامها في تشغيل المصانع وتحريك وسائل النقل المختلفة وتشغيل الأدوات المنزلية وغير ذلك من الأغراض . وكل حركة يقوم بها الإنسان تحتاج إلى استهلاك نوع من أنواع الطاقة ويستمدَّ الإنسان طاقته لإنجاز أعماله اليدوية والذهنية من الغذاء المتنوع الذي يتناوله كل يوم ، إذ يتمّ حرق الغذاء في خلايا الجسم ويتحول إلى طاقة . ويمكن تعريف الطاقة بأنها قابلية إنجاز تأثير ملموس (شغل) . وهي توجد على عدة أنواع منها طاقة الريح ، وطاقة جريان الماء ومسا قطها . ويمكن أن تكون الطاقة مخزونة في مادة كالوقود التقليدي (النفط ، الفحم، الغاز) .

مصادر الطاقة
ان أهمّ مصادر الطاقة المستخدمة حالياً، وتلك المتوقع أن يكون لها شأن في توفير الطاقة للبشرية، هي: 1- الوقود الأحفوري: ويتمثل في الفحم والنفط والغاز الطبيعي، ويختزن هذا الوقود (طاقة كيميائية) يمكن الاستفادة منها عند حرقه، والوقود الأحفوري هو مصدر الطاقة الرئيس حيث يسهم بما يربو على 90% من الطاقة المستخدمة اليوم، ولأنه مصــــدر قابل للنضوب، وبسبب مشكلات التلوث البيئي، فإن البحث حثيث لتوفير وتطوير مصادر أخرى للطاقة.

2- المصادر الميكانيكية: وهي مساقط المياه والسدود وحركة (المدّ والجزر) وطاقة الرياح، ولذا تُقام محطات (توليد الكهرباء) عند السدود والشلالات ومناطق المد العالي وربوع الرياح الشديدة لاستغلال قوة الدفع الميكانيكية في تشغيل التوربينات.

3 – الطاقة الشمسية: يُستفاد منها عبر التسخين المباشر في عمليات تسخين المياه والتدفئة والطهي، كما يمكن تحويلها مباشرة إلى (طاقة كهربائية) بواسطة (الخلايا الشمسية).

4- الطاقة الحرارية الجوفية حيث يُستفاد من ارتفاع درجة الحرارة في جوف الأرض، وفي بعض المناطق تكون هذه (الطاقة الجوفية) قريبة من سطح الأرض فتوجد بالتالي الينابيع الحارة، ففي أيسلندة ـ مثلاً – تنتشر هذه الينابيع، ويُستفاد منها لأغراض التدفئة والتسخين.

5- الكتل الحيوية (البيوماس): وهي المخلفات الحيو، وهذا التصنيف يشمل: انية والزراعية التي يتم تخميرها في حفر خاصة ليتصاعد منها غاز الميثان، وهو غاز قابل للاشتعال.

6- غاز الهيدروجين: يمثّل نوعاً مهماً من أنواع الوقود، وهو مرشح لأن يكون له دور كبير في تأمين الطاقة في المستقبل، وقد ظهرت سيارات تعمل على غاز الهيدروجين، وأبرز تطبيقاته الاســـتفادة منه في (خلايا الوقود)، وهي خلايا واعـــدة بتطبيقات واسعة في المستقبل، ويتم توليد الكهرباء داخلها مباشرة بتمرير الهيدروجين والهواء بها، وعبــر اتحاد الهيـــــدروجين والأوكسجين نحصل على (طاقة كهربـــائية)، وأما مخلــــفات هذه العملية فهي الماء فقـــــط، أي إن (خـــــلايا الوقود) لا تسـهم في تلويث البيئة.

7- الطاقة النووية: تنتج عن (الانشطار النووي) في المفاعلات النــووية، ويُستفاد منها في تسيير الســــفن والغـواصات وتوليد (الطاقة الكهربائية)، وأبرز سلبياتها (النفايات المشعة) النــــاتجة، ومشكلة التخلص منها، وضوابط الســــلامة العالية اللازمة لمنع انفجار المفاعل، أو تسرّب الإشعاعات منه. وهناك تصنيف للطاقة ومصادرها يقوم على مدى إمكانية تجدد تلك الطاقة واستمراريتها 1- الطاقة التقليدية أو المستنفذة: وتشمل الفحم والبترول والمعادن والغاز الطبيعي والمواد الكيميائية، وهي مستنفذة لأنها لا يمكن صنعها ثانية أو تعويضها مجدداً في زمن قصير.

2- الطاقة المتجددة أو النظيفة أو البديلة: وتشمل طاقة الرياح والهواء والطاقة الشمسية وطاقة المياه أو الأمواج والطاقة الجوفية في باطن الأرض وطاقة الكتلة الحيوية، وهي طاقات لا تنضب.

الواقع الحالي لاستخدام الطاقة :
تعتمـد المجتمعات المتقدمة على مصادر الطاقة المختلفة في كافة مرافق الحياة. وغالبية المصادر المستخدمة حالياً هي مصادر الوقود الأحفوري . وقد كانت النسـب المئـوية لاسـتهلاك مصـادر الطـاقة المختلـفة فـي عــام 1992 (الشكل 1-1) كما يلي : النفط 33% ، والفحم 22.8% ، والغاز 18.8% ، ومصادر الكتلة الحيوية 13.8% ، والمحطات المائية 5.9% ، والمحطات التي تعمل بالطاقة النووية 5.6% .

شكل (1-1): النسب المئوية لاستهلاك الطاقة من المصادر المختلفة في عام 1992

الجدول (1-1) يبين كمية الطاقة المستهلكة خلال الأعوام من 1990 وإلى غاية 1998 لكل من الدول العربية وبقية الدول النامية والدول المتقدمة والمجموع العالمي للاستهلاك . ويلاحظ من الجدول أن استهلاك الدول العربية عام 1998 كان حوالي 3.6% من مجموع الاستهلاك العالمي وذلك لكونها دولاً نامية وغير صناعية ، بينما وصل الاستهلاك في أمريكا الشمالية (الولايات المتحدة ، وكندا ، والمكسيك) إلى حوالي 30% . وقد كان الاستهلاك في الولايات المتحدة ، وهي تمثل 5% من مجموع سكان العالم ، حوالي 25% من الاستهلاك العالمي . ويوضح الشكل (2-1) معدل الاستهلاك السنوي للشخص الواحد في مختلف مناطق العالم ، والمعدل العالمي السنوي لاستهلاك الفرد .

ويتم حالياً استخدام مصادر الطاقة في أربعة مجالات رئيسية هي : النقل ، والصناعة ، والسكن (دور منفردة وعمارات سكنية) ، والقطاع التجاري (مكاتب، مدارس ، مخازن …. الخ) . وإنّ جزءاً كبيراً من الطاقة المستهلكة يُستخدم كحرارة وليس لإنتاج شغل ، ويُمثل نسبة مقدارها حوالي 50% من الطاقة المستهلكة كخسائر حرارية ، وأكثر ما يحدث ذلك عند محطات توليد الطاقة الكهربائية حيث تساوي نسبة الضياع على شكل حرارة 64% من الطاقة المستهلكة (الداخلة) مقابل 36% من الطاقة الكهربائية المنتجة أو المفيدة أي أن الكفاءة تساوي 36% فقط .

مصادر الطاقة التقليدية
لفهم الطاقة يجب معرفة مصادرها ، وحدودها ، واستخداماتها . ولتكوين سياسة جيدة وفاعلة تجاه الطاقة يجب أن نعرف كمية مصادر الطاقة ومدى ديمومتها واستمراريتها . والإجابة عن مثل هذه الأسئلة ليست سهلة لأنها تعتمد على التقنيات المستقبلية لاستخراج هذه المصادر ، وأسعار الطاقة ، ونمو الاستهلاك .

إن تقدير كميات الفحم أسهل من تقدير كميات النفط والغاز وذلك لكون حقول النفط والغاز موجودة في مناطق متباعدة وعلى أعماق تتراوح من مئات الكيلومترات إلى عدة كيلومترات ، ولا يمكن معرفة مكانها إلاّ بطرق استكشاف مكلفة جداً . والجدول (2-1) والشكل (4-1) يبينان الاحتياطي النفطي العالمي واحتياطي دول المنطقة العربية على الترتيب ، إذ يتبين واضحاً أن احتياطي الدول العربية من النفط كان 643.6 مليار برميل في عام 1998 ، وهذا يمثل أكثر من 63% من الاحتياطي العالمي ، ومنه يمكن القول أن الدول العربية وخاصة دول الخليج العربي ستبقى المصدر الرئيسي لتمويل الطاقة في العالم .

أما بالنسبة إلى الغاز الطبيعي فالوضع مختلف . ففي الوقت الحاضر بلغ احتياطي الدول العربية في عام 1998 ، وكما هو موضح بالجدول (3-1) والشكل (5-1) ، ما مقداره 32708 مليار متر مكعب ، وهو ما يعادل 22% من الاحتياطي العالمي .

إن إنتاج الدول العربية من إنتاج الطاقة الكلي في عام 1998 ، وكما هو مبين بالجدول (4-1) والشكل (6-1) ، كان 30.6 مليون برميل مكافئ نفط يومياً ، وهو يمثل نسبة 17.6% من مجموع الإنتاج العالمي . وهذه النسبة ستزداد مع مرور الوقت ، وسيزداد الاعتماد العالمي على مصادر الطاقة العربية ، حسب ما هو متوقع ، عند النظر إلى كمية الاحتياطات الضخمة الموجودة في المنطقة العربية من هذه المصادر .

استمرارية توفر مصادر الطاقة :
إن وضع الطاقة في الوقت الحاضر يختلف عما كان عليه في العقدين الماضيين . فانخفاض الأسعار ، وتوفر كميات كبيرة من الوقود في الأسواق أدّيا إلى الإسراف في استهلاك الطاقة ، وعدم الالتزام بترشيده ، وعدم البحث عن مصادر جديدة .

إن كمية الطاقة الموجودة في باطن الأرض محدودة ، ومن غير الممكن بقاؤها لفترة طويلة جداً . ولكن تقدير فترة بقائها ليس سهل أيضاً . فاحتياطي العالم من النفط ارتفع من 540 بليون برميل عام 1969 ميلادية إلى أكثر من 1000 بليون برميل في الوقت الحاضر . وهذا الارتفاع في الاحتياطي لا يعني أنه غير محدود . فلقد تم مسح مكامن الأرض بصورة مفصلة من قِبل شركات النفط واكتشفت الحقول السهلة والحقول ذات تكلفة الإنتاج القليلة . وهنالك حقول صعبة تحتاج إلى حفر عميق أو ذات طبيعة استخراج صعبة جداً وتحتاج إلى مواد وجهود كبيرة ، وقسم منها يحتاج إلى طاقة وأحياناً تكون الطاقة اللازمة للاستخراج مساوية أو أكثر من الطاقة المستخرجة. وفي هذه الحالات سيكون استخراج الطاقة بدون فائــدة .

من الأرقام المفيدة والمهمة جداً في هذا المجال نسبة الاحتياطي إلى المنتج . فإذا تم تقسيم الاحتياطي المضمون في نهاية كل سنة على الإنتاج في تلك السنة فإن الناتج سيمثل طول عمر الاحتياطي . وهذا الرقم سيدلّ على توفر الطاقة في منطقة معينة من العالم . فمثلاً لقد كان هذا الرقم في عام 1992 هو 10 أعوام لنفط غربي أوربا ، و 25 عاماً لأمريكا الشمالية بينما كان أكثر من 100 عام لمنطقة الشرق الأوسط . ويمتلك الشرق الأوسط أكثر من 60% من احتياطي العالم من النفط ، وتمتلك المملكة العربية السعودية وحدها أكثر من 25% من الاحتياطي .

ويختلف الأمر بالنسبة إلى الغاز الطبيعي . فإن الاحتياطي الأكبر يقع في دول الاتحاد السوفيتي السابق إذ تحتوي هذه المنطقة على أكثر من 40% من احتياطي العالم ، وتحتوي دول الأوبك على حوالي 40% أيضاً من الغاز. أما الباقي فإنه يتوزع على أنحاء مختلفة من العالم . وإن نسبة الاحتياطي إلى المنتج في الوقت الراهن بالنسبة إلى الغاز الطبيعي هي حوالي 65 عاماً .

أما بالنسبة إلى الفحم الحجري فإن الاحتياطي العالمي كبير وموزع على مناطق واسعة ومختلفة . ويبلغ مقدار الاحتياطي إلى المنتج بالنسبة إلى الفحم أكثر من 200 عام ، ولكن كما نعلم فإن للفحم مساوئ كثيرة ، حتى وإن قورنت بالنفط والغاز . وأهم هذه المساوئ هو انبعاث ثاني أكسيد الكربون وأكسيد الكبريت وأكسيد النيتروجين . وبالرغم من إمكانية تحويل الفحم إلى سائل لغرض تقليل مشاكله البيئية فإن سعر كلفة التحويل سيمثل عقبة لكونه عالياً .

مما تقدم أعلاه يتبين أنه إذا كان هدفنا هو تقليل كمية الوقود التقليدي الذي يتم حرقه لغرض إطالة عمره ولتقليل المخاطر البيئية التي يسببها فإنه يتوجب علينا البحث عن مصادر جديدة غير ناضبة وصديقة للبيئة ، وتطوير كفاءتها ، وتقليل أسعار منظوماتها .

تسلمين الله يعطيج ألف عافيه

مشكورة يا الغلا

و ربي يعافيج

و ننتظر الزووود منج

شكرا كتتيير …يعطيك العافية

تسلمينـ روحي واللهـ يعطيج الف عاااااااااااافيهـ

تسلمين

تسلميـ ن أختيـْ ع الطرحْ..

يسلموووووووووووووووووووووووو

أستغفرك يا رب من كل ذنب

التصنيفات
الصف العاشر

مراجعة جميع قوانين الفصلين الرابع و الخامس ( القوى و الإتزان – الشغل والطاقة ) -تعليم اماراتي

اسم الكمية الفيزيائية

رمزها

العلاقة الرياضية للكمية

وحدة قياسها

نوع الكمية

الشغل
W
W =Fd cosθ
J
قياسية
طاقة الحركة
K.E
K.E=1/2 mυ2
J
قياسية

الموضـــــــــــــوع كــــامل بالمرفقــــــــــــــــــــات ,,

{ منقول }

الملفات المرفقة

تم تعديل العنوان
الافضل بدون زخارف و مدود

شكرا على جهودكم

عُلِــــــــمْ ..

الحــــــــــــــــــــــمد لله

التصنيفات
الصف الثاني عشر

تقرير طرق توليد الطاقة الكهربائية للصف الثاني عشر

في المرفقاااااااااات

الملفات المرفقة

القسم اليوم منور بمواضيعج المميزة يا الغالية
خاطري أعطيج مليون تقييم بس ما صار
اظاهر لأني تخطيت الحد المسموح لي للتقييم
مشكووورة و مما تقصرين و كثر الله من امثالج

تسلمين الغلا ع الطرح الكشووووخي ..

ثااااااااااان كيووووووو

بالتوفيق ^^

؛
.

السَّلامْ عليكُمْ وَ رَحمـﮧ الله وَ بَركآتُـﮧ ..!*
يسْعَدليْ مساجْ
بكل خير وودْ . . . ~

::

تثلميَن الغ ـآليةَ ع الطرحً ..

الغ ـلامرتَ من هناَ..

شكرا لمرورك

ماااااااااااااايظهر
!!!!!!!!!!!!!!!!!!!

السلام عليكم ورحمة الله و بركاتة ممكن تعطوني تقرير عن الطاقة الكهربائية

أستــــغفر الله العظيم