أتمنى استفادة للجميع
لللأماااانة منقووول
- ؤؤؤؤ.pdf (715.9 كيلوبايت, 1059 مشاهدات)
في ميزان حسناتك
أتمنى استفادة للجميع
لللأماااانة منقووول
في ميزان حسناتك
هل تساءلت يوماً من الأيام عن كيفية عمل الطاقة النووية وعن كيفية بقاء الطاقة النووية آمنة؟
سنقوم في هذه المقالة بتوضيح كيفية عمل المفاعل النووي ومحطة الطاقة وسنقوم بشرح الانقسام النووي وإعطائك نظرة داخل المفاعل النووي.
إن اليورانيوم عنصر شائع جداً على الأرض دمج مع الكوكب أثناء تشكله وقد تشكل أصلاً في النجوم حيث انفجرت النجوم القديمة وتجمعت الغبار من هذه النجوم المحطمة لتشكل كوكبنا.
إن اليورانيوم 238 لديه نصف حياة طويل جداً (4.5 بليون سنة) ولهذا السبب مايزال موجوداً بكميات كبيرة جداً أي بحوالي 99 % وإن اليورانيوم 235 يشكل حوالي 0.7 % من اليورانيوم المتبقي والذي وجد طبيعياً بينما اليورانيوم 234 نادر جداً وقد تشكل عن طريق انحلال يورانيوم 238 (مر اليورانيوم 238 بمراحل عديدة أو اضمحلال ألفا وبيتا لتشكل نظائر مشعة مستقرة وإن اليورانيوم 234 هو وصلة في هذه السلسلة) وإن لدى يورانيوم 235 قدرة مثيرة تجعلها مفيدة في إنتاج الطاقة النووية وفي إنتاج القنبلة النووية وإن اليورانيوم 235 ينحل طبيعياً مثل يورانيوم 238عن طريق إشعاع ألفا ويمر يورانيوم 235 أيضاً بالانقسام التلقائي في نسبة مئوية صغيرة من الزمن.
على أي حال فإن يورانيوم 235 أحد بعض المواد التي يمكن أن تمر بالانقسام المستحث، إذا قام نيوتروناً بالمرور عبر نواة اليورانيوم 235 ستقوم النواة بامتصاص النيوترون بدون تردد وسيصبح غير مستقر ومنقسم فوراً.
الانقســــــــــام النــــــــــــووي
عندما تؤسر نواة النيوترون تنقسم إلى ذرتين خفيفتين وتقذفان اثنان أو ثلاثة من النيوترونات الجديدة (يعتمد عدد النيوترونات المقذوفة على طريقة انقسام ذرة اليورانيوم 235) تقوم بعد ذلك الذرتين الجديدتين ببعث إشعاع غاما عندما تستقران في وضعياتهما الجديدة.
هناك ثلاثة أمور حول عملية الانقسام المستحثة هذه والتي تجعلها هامة بشكل خاص:
ـ إن احتمال أسر اليورانيوم 235 النيوترون أثناء مروره عالي جداً وإن المفاعل الذي يعمل بشكل صحيح ( المعروف بالحالة الحرجة) يقذف نيوترون واحد من كل انقسام وبالتالي يتشكل انقسام آخر.
ـ إن عملية أسر النيوترون والانقسام يحدثان بسرعة كبيرة (1 × 10 – 12 ثانية).
ـ تصدر كمية هائلة من الطاقة على شكل حرارة وإشعاع غاما عند انقسام ذرة وحيدة وإن الذرتان اللتان تصدران عن الانقسام تصدران إشعاع بيتا وتملكان إشعاع غاما أيضاً.
الطاقة التي تصدر عن الانقسام الوحيد يأتي في الحقيقة من الانقسام ومن النيوترونات سوياً وهي تزن أقل من ذرة اليورانيوم 235 الأصلي والاختلاف في الوزن حول مباشرة إلى طاقة وهو يصدر شيء على غرار 7200 Me (مليون فولط الكتروني) وذلك عن طريق اضمحلال ذرة يورانيوم 235 واحدة وهناك الكثير من ذرات اليورانيوم في باون اليورانيوم.
إن باون اليورانيوم المخصب جداً يستعمل لتشغيل غواصة نووية أو حاملة طائرات نووية في كمية مساوية لغالون من الغازولين وإن حجم باون اليورانيوم أصغر من كرة بيسبول وحجم مليون غاز من الغازولين يملأ مكعب يبلغ حجمه 5 أقدام لكل جانب (أي بطول بناية ذات خمسة طوابق) وهنا يمكن أن يكون لديك فكرة عن كمية الطاقة المتوفرة في القليل فقط من يورانيوم 235 ولكي تعمل خواص اليورانيوم 235 هذه يجب أن تخصب عينة من اليورانيوم تحتوي 2 % إلى 3 % أو أكثر من يورانيوم 235 وإن تخصيب 3 % كافي لاستخدامه في مفاعل نووي مدني يستخدم لتوليد الطاقة ويجب أن يكون اليورانيوم المستخدم في الأسلحة بنسبة 90 % أو أكثر من يورانيوم 235.
أنابيب نقل البخار لتزويد المولد بالطاقة في محطة توليد الطاقة
إن وعاء المفاعل الضاغط موضوع في بطانة إسمنتية التي تعمل كوقاية إشعاعية وإن هذه البطانة موضوعة داخل وعاء احتواء كبير جداً ويحتوي هذا الوعاء على قلب المفاعل وعلى أجهزة مثل الرافعات …الخ التي تسمح للعمال في المحطة بتزويد الوقود وإبقاء عمل المفاعل وقد وضع وعاء الاحتواء الفولاذي هذا لمنع تسرب أي غازات أو سوائل مشعة من المحطة وأخيراً إن وعاء الاحتواء محمي ببناء إسمنتي خارجي قوي بما فيه الكفاية ليحميه من بعض الأشياء كتحطم طائرة نفاثة فيه، وإن أبنية الاحتواء الثانوية هذه ضرورية لمنع هروب إشعاع بخار مشع في حال وقوع حادث وإن عدم وجود أبنية الاحتواء الثانوية هذه في محطات الطاقة النووية الروسية سمحت للمواد المشعة بالهروب في حادث تشرنوبيل.
يتصاعد الدخان من برج التبريد في محطة هاريس
عمال المراقبة في غرفة التحكم في محطة الطاقة النووية
يعملون على مراقبة عمل المفاعل النووي
إن يورانيوم 235 ليس الوقود الوحيد الممكن استخدامه في محطة الطاقة، هناك مادة انقسامية أخرى هي بلوتونيوم 239 التي يمكن أن تنشأ بسهولة عن طريق دمج يورانيوم 238 بنيوترون الشيء الذي يحدث دائماً في المفاعل النووي.
عندما تنقسم ذرة يورانيوم 235 تعطي نيوترونين أو ثلاثة نيوترونات (اعتماداً على طريقة الانقسام) وإذا لم يكن هناك ذرات يورانيوم 235 في المنطقة فستقوم النيوترونات الحرة بالطيران إلى الفراغ كأشعة نيوترون وإذا كانت ذرة اليورانيوم 235 جزء من كتلة اليورانيوم فسيكون هناك ذرات يورانيوم 235 أخرى قريبة عندها سيحدث أحد هذه الأمور الثلاثة:
ـ إذا قام نيوترون واحد فقط من النيوترونات الثلاثة من كل انقسام بضرب قلب اليورانيوم 235 وتسبب ذلك بالانقسام عندها ستكون كتلة اليورانيوم في حالة حرجة وستوجد الكتلة في درجة حرارة مستقرة ويجب أن يبقى المفاعل النووي في حالة حرجة.
ـ إذا قام أقل من نيوترون واحد من النيوترونات الحرة بضرب ذرة يورانيوم 235 عندها ستكون الكتلة في حالة حرجة فرعية وسينتهي الانقسام في الكتلة.
ـ إذا قام أكثر من نيوترون واحد من النيوترونات الحرة بضرب ذرة يورانيوم 235 ستكون الكتلة حينها في حالة حرجة قصوى وستقوم بالتسخين.
أراد مصمم القنبلة النووية من القنبلة أن تكون في حالة حرجة قصوى لذلك إن كل ذرات اليورانيوم 235 في الكتلة تنقسم في مايكرو ثانية (جزء من مليون من الثانية).
يحتاج قلب المفاعل النووي في المفاعل النووي لأن يكون في حالة حرجة قصوى بعض الشيء لكي يستطيع العاملين في المحطة من رفع وخفض درجة حرارة المفاعل النووي وتعطي أذرع التحكم العاملون طريقة لامتصاص النيوترونات الحرة وبهذا يمكن للمفاعل أن يبقى في مستوى حرج.
إن كمية اليورانيوم 235 في الكتلة (مستوى الإخصاب الإغناء) وشكل الكتلة يسيطران على الحالة الحرجة في العينة، تخيل بأن شكل الكتلة صفيحة رقيقة جداً ستقوم حينها معظم النيوترونات الحرة بالطيران إلى الفراغ بدلاً من ضرب ذرات اليورانيوم 235 لذلك فإن الجسم الكروي هو الشكل المثالي للكتلة وإن كمية اليورانيوم 235 التي يجب جمعها سوياً في الجسم الكروي للحصول على ردة فعل حرجة هي حوالي 2 باون (0.9 كيلوغرام) وهذه الكمية تدعى باسم الكتلة الحرجة وإن الكتلة الحرجة للبلوتونيوم 239 هي حوالي 10 أونسات (283 غرام).
ما الذي يمكن أن يسير بشكل غير صحيح
إن محطات الطاقة النووية المبنية بشكل جيد لديها فائدة كبيرة عندما يتعلق الأمر بتوليد الطاقة الكهربائية وهي نظيفة جداً بالمقارنة مع محطات توليد الطاقة عن طريق الفحم المشتعل وإن محطات الطاقة النووية عبارة عن حلم أصبح حقيقة من الجهة البيئية وإن محطة توليد الطاقة بالفحم المشتعل يصدر نشاط إشعاعي إلى الجو أكثر من محطة طاقة نووية تعمل بشكل جيد وإن محطات الفحم المشتعل تطلق الأطنان من الكربونات والكبريت وعناصر أخرى في الجو.
بارك الله فيج..
وتسلم يمناج..
ما قصرتي,,
الله يسلمج
اشكرج ع مرورج الرائع
الأول يستعمل الماء الثقيل كمهدئ ومبرد ومن الممكن أن يستعمل موائع أخرى مبردة ويأخذ بعين الاعتبار نوعين من الموائع :الماء الاعتيادي حيث أنه أقل كلفة من الماء الثقيل والمائع العضوي الذي يمكن أن يعمل على درجات حرارية أعلى لتحسين الكفاءة الحرارية لمحطة القدرة .
الثاني يستعمل الماء الاعتيادي كمبرد في أنابيب الضغط العمودية ، مغمورة في الماء الثقيل الذي يعمل كمهدئ حيث يسمح لغليان المبرد.
منظومة مفاعل الماء الثقيل الأساسية:
في كلا نموذجي المفاعل المذكور يكون مشبك قنوات الوقود مغمورا"في حوض الماء الثقيل المستعمل كمهدئ يمر عبر القنوات ،والوقود للمفاعل CANDO مماثل لوقود (LWR) في أنه مصنع من اسطوانات صغيرة (PELLETS)من UO2 المحفوظة في انابيب من الزركولوي (غطاء الوقود) حيث أن مفاعل الكاندو ذا القدرة 600 MW يحتاج 4500 حزمة وقود فيها حوالي 100 طن من UO2 حيث في CANDO فان قضبان الوقود تحتوي فقط على التكرير الطبيعي لعنصر 235 U .
تكون قضبان الوقود مرتبة بشكل حزم وبطريقة أصغر وأبسط مما هي عليه في و ليس لهذه الحزم قطع غيار لغرض صيانة القلب وانما تتم عملية الصيانة بواسطة قنوات الوقود (حوالي 15حزمة لكل يوم اشتغال للمفاعل )وهذه العملية لها فائدة من حيث أنه لا توجد ضرورة لاطفاء المفاعل عند تحميل الوقود والمردود الأكثر أهمية لاستخدام HWR توفر مادة ماصة بقلة للنترونات أثناء اشتغال المفاعل لعدم وجود اختلافات كبيرة في احتراق الوقود وتكوين السموم الحاصلة من نواتج الانشطار أثناء دورة الوقود.
كل قناة وقود عبارة عن صف من حزم الوقود المرتبة الواحدة تلو الاخرى حيث قنوات الوقود هذه تمر بصورة افقية خلال مشبك من الانابيب التي هي جزءمن الكالندريا التي تحتوي على المهدئ ، هذا المهدئ يكون محفوظا تحت صغط جوي واحد تقريبا وذلك للاستغناء عن تصنيع وعاء ضغط كبير لمنظومة المفاعل .
الكالندريا هي اسطوانة ذات حجم معقول قطرها حوالي 25قدم (7.6m) وطولها (7.6m) جدرانها مصنوعة من الفولاذ غير القابل للصدأ بسماكة (2.5cm) و النهايات بسماكة (5cm) أما الانابيب فهي مصنوعة من الزركولي
وأيضا المهدئ المتواجد في الكالندريا له منظومته الخاصة للتبريد (مضختينو مبادلين حرارين) للحفاظ على درجته (70c) و يكون السرداب الحاوي على الكالندريا مملوء بالماء أثناء عمل المفاعل . انابيب الضغط المنفردة يمكن ان تفتح اثناء عمل المفاعل لغرض اعادة تحميل ، صنعت هذه الانابيب من سبيكة الزركونيوم ويوجد بين انبوبة الضغط وانبوبة الكالندريا المحيطة بها حيز يحتوي على غاز .
يكون الماء الثقيل كمبرد محفوظ تحت ضغط يبلغ حوالي (10mp) ودرجة حرارته في انابيب الضغط حوالي( 310c)
اما المائع المبرد الثانوي هو الماء الخفيف كما في اي محطة نووية مجارية ، والكفاءة الكلية ل CANDU
تبلغ %29 وهي اقل من معظم محطات القدرة البخارية .
السيطرة على المفاعل (reactivity) تتم باستخدام بضع منظومات متضمنة ماصات السيطرة لمنطقة الماء الخفيف ، قضبان المص الصلبة و السموم المضافة الى المهدئ في CANDU التجاري تتم السيطرة الرتيبة بواسطة منطقةالممتصات (zone absorber) التي تتكون من حجيرات في القلب فيها الماء الخفيف كممتص للنترون والذي يمكن ان يوضع موضع الاستعمال ، و يمكن استخدام قضبان السيطرة الميكانيكية (الكادميوم) والتي يمكن اسقاطها بتأثير الجاذبية .
المنظومات المساعدة :
منظومة كيمياء وسيطرة الحجم والتبريد عند اطفاء المفاعل مماثلة لمنظومات (PWR) ما عدا الاختلافات المطلوبة لحالة فصل المبرد عن المهدئ .
منظومة تنظيف المهدئ تقوم بالسيطرة على الشوائب وتتضمن القابلية على ازالة البورون و الكادميوم وسموم النترونات .
منظومة تنقية المبرد تأخذ الجريان من مخرج المضخة الاولى وترجعه الى مدخل المضخة حيث تستعمل للتصفية والمبادل الايوني لازالة الشوائب ، وبسبب الكلفة الباهظة للماء الثقيل100 دولار لكل واحد كيلو غرام
فان بناية المفاعل تحتوي على منظومات للجمع و التنقية والمحافظة على نقاوة الماء الثقيل
منظومات السلامة :
في حالات الطوارىء هناك رد فعل اسقاط قضبان السيطرة تحت تأثير الجاذبية و في الحالات التي لا يمكن إيلاج هذه القضبان فإن مفاعلات الكاندو المبكرة الصنع تمتلك وسيلة لتصريف المهدىء أما المفاعلات الحديثة فقد عوض عن ذلك بمنظومة ضخ سريع للكادميوم إلى داخل المهدىء
وفي حالة حدوث تشقق في منظومة تبريد المفاعل فان الصمامات تنغلق لعزل المنظومة السليمة ، والماء الخفيف في حوض الخزن يتم ضخه الى المنظومة المتشققة النترونية _ استخدام الوقود _ اشتغال المفاعل :
تمتاز مفاعلات الكاندو بميزة اعادة تحميل الوقود اثناء اشتغال المفاعل و بصورة تقريبية ينتج 2.1 نترون بعد امتصاص نترون واحد من قبل مادة انشطارية ويكون مصيرها :
0.7 تقتنص من قبل المادة الخصبة مؤدية الى انتاج مادة قابلة للانشطار .
0.02 يمتص من قبل الماء الثقيل .
0.22 يمتص من قبل المواد الداخلة في تركيب القلب ونواتج الانشطار.
0.06 يمتص من قبل مواد اخرى متضمنا سموميات السيطرة .
0.04 تفقد بسبب التسرب .
المفاعلات الحرارية المبردة بالغاز
HTGRيعتبر الكربون كمهدئ بديل للهدروجين في المفاعل الحراري ، وتتطلب النيترونات اصطدامات أكثر لتبطئها عند استخدام الكربون كمهدئ عوضاً عن الهيدروجين ( الماء ) . وهذا يعني أن الكربون يمتص قسماً أصغر من النيترون مقارنة بالماء ، وإن تصميم المفاعل الذي يحتوي على كتلة كبيرة من الكربون له وقع تأثيري كبير من الناحية النيترونية ، وفي معظم الحالات التي تستخدم الكربون كمهدئ المفاعل فإن مائع التبريد لهذا المفاعل يكون غازا.
المفاعل المعروض من قبل شركة ( the general electric) المسمى بمفاعل الحرارة العالية المبردة بالغاز أي ( h t g r ) يستعمل الهيليوم كمبرد وقلب المفاعل يتكون من مجاميع الكربون المكدسة متضمناً مناطق صغيرة تحتوي على وقود اليورانيوم _ الثور يوم
[COLOR="Red"]المنظومات الأساسية لمفاعل درجة الحرارة العالية المبرد للغاز [/COLOR
]إن الاختلاف جوهري على باقي تصاميم المفاعلات : في منظومة الوقود المهدئ من حيث أن الوقود يتكون من اسطوانات صغيرة جداً من اليورانيوم و الثور يوم الموجودة في مناطق الوقود لمجاميع المهدئ الكربوني ، ومنظومة التبريد الابتدائية المتميزة باستخدامها لغاز الهليوم كمبرد ومنظومة التبريد الابتدائية تقع ضمن وعاء المفاعل المصنع من الخرسانة .
* يتكون قلب مفاعل درجة الحرارة العالية المبردة بالغاز من كومة ضخمة من مجموعات الجرافيت السداسية والتي تحوي كل منهما على مناطق وقودية بالإضافة لاحتوائها على مناطق مرور غاز الهليوم المضغوط ، يتكون الوقود من ثاني أكسيد أو كار بيد سيراميكي ، حيث أنه يتواجد كنوبات وقود صغيرة مغطاة بمادة خزفية ، والوقود المكون بشكل اسطوانات صغيرة ( pellets ) لها أغلفة مختلفة لتسهيل عملية الفصل أثناء عملية معاملة الوقود ، حيث يتكون اسطوانات الوقود الصغيرة القابلة للانشطار من اليورانيوم ( u 238 ) المخصب بنسبة 9% من(u235 ) ، مغطاة بالكربون الحراري ( pyrolitic ) وكار بيد السيليكون ، أما الاسطوانات الصغيرة المنتجة ( th233 ) فهي مغطاة بالكربون فقط ، وعند اشتغال المفاعل فإن الكر بيد السيلسيكوني القابل للاحتراق يساعد في فصل النوعين في عملية معاملة الوقود .
هناك منفذ في وعاء المفاعل المصنوع في الخرسانة المسبقة الإجهاد ويقع فوق المجاميع المركزية إن هذا المنفذ يستخدم في عملية إعادة تحميل الوقود وكذلك لغرض تحريك قضبان السيطرة أثناء عملية اشتغال المفاعل ، تمتلك المجامع المركزية أيضاً قناة إضافية منها كربيد البور ون كاحتياط لمنظومة المفاعل .
تتكون منظومة التبريد الابتدائية من القلب وأربعة إلى ستة دوائر لمائع التبريد الابتدائي حيث تتضمن كل دائرة على مضخة التدوير ( circulate ) الخاصة بها وعلى مولدها البخاري يضخ غاز الهليوم بضغط مقداره ( mp5 ) إلى الأسفل خلال القلب ومن ثم يخرج بدرجة حرارة تبلغ حوالي ( 743 ) درجة حيث أن الدرجة الحرارية هي أعلى من درجة حرارة المفاعلات المبردة بالماء . بعدئذ يمر الغاز في أحد الأنابيب المؤدية إلى مولد البخار ، إن سبب اشتعال المفاعل على درجة حرارة عالية هو كنتيجة المبرد الغازي وللخصائص الجيدة لقلب المفاعل الذي يتحمل درجات الحرارة العالية حيث لا يوجد غلاف معدني حساس لدرجات الحرارة العالية في الوقود ، البخار الحاصل كنتيجة لدرجات الحرارة العالية يعطي طاقة كهربائية بكفاءة تعادل ( 39 % )
المنظـومــات الـمسـاعــدة
تتكون من اثنين أو ثلاث دوائر مساعدة ، حيث في حالة فشل إحدى دوائر التبريد الرئيسية فإن المنظومات المساعدة تعمل على إزالة حرارة الانحلال بعد إطفاء المفاعل ، وتتوفر منظومتان متماثلتان تخدمان غرض تنقية غاز الهليوم المبرد تتم عملية التنقية بهذه المنظومات على أساس إلصاق جزيئات الغاز بالسطح الصلب حيث يستخدم غاز الهيدروجين كمستأصل لإزالة الدقيقات والغازات الملوثة . لقد صممت منظومة عزل المولد البخاري لمنع تسرب الماء أو البخار إلى المبرد الابتدائي فإذا حصل تسرب للماء فإن من الممكن في هذه الحالة عزل دائرة التبريد المعطوبة عند إطفاء المفاعل ، بينما تترك بقية دوائر التبريد لتجهيز التبريد اللازم .
مـنظـومــات السلامـــة
تختلف متطلبات السلامة لـ ( HTGR ) بصورة أساسية عن متطلبات السلامة لمفاعلات الماء ، عند حدوث ضرر في وقود مفاعل درجة الحرارة العالية فإن هناك وقتاً طويلاً لتصريف الحرارة ، ففي حالة وقود الماء الخفيف فإن حرارة الانحلال يمكن أن تقتصر غلاف الوقود بغضون دقيقة أو دقيقتين . من لحظة فقدان مائع التبريد ، أما في حالة ( HTGR ) فإنه يحتاج إلى زمن ساعة أو ساعتين عقب فقدان الوقود حتى ينصهر غلاف الوقود المطلي بمادة خزفية التي هي السبب في إطالة زمن تصريف الحرارة ، ومتانة القلب بسبب تواجد الجرافيت الذي تزداد متانته بارتفاع درجة الحرارة، من جهة أخرى يجب ضخ غاز الهيليوم المائع المبرد بضغط عالي لغرض سعة تبريدية عالية .
النيترونية _ استخدام الوقود _ اشتغال المفاعل
استعمال الكربون كمهدئ يقتضي على النيترونات الإنشطارية أن تقطع مسافة أكبر حتى تصل إلى الطاقات الحرارية ، ويكون الوقود ( HTGR ) معرضاً إلى نيترونات وبطاقات أكثر متوسطة عما هو عليه في مفاعلات الماء الخفيف ، وهذا يؤدي إلى امتصاص أكبر للنيترونات من قبل المادة الخصبة ( th 232 ) . وهذه الظاهرة تساعد في تصميم مفاعل نسبة التحويل فيه عالية نسبياً .
Boiling Water Reactor
مفاعل الماء المغلي
BWR
مفاعلات الماء المغلي (BWR)
1 يوجد في قلب المفاعل عدد كبير من مجمعات الوقود حيث كل يمثل مجمع مصفوفة مربعة والكثير من المفاعلات تستعمل مصفوفة(7 ×7 )إلا أن الصنف الحديث (BWR6)يستعمل ( 8×8 )من أقلام الوقود حيث تكون قضبان الوقود أخف مما هي عليه في مجمعات الوقود القديمة وبنيةالقضيب مماثلة لمفاعلات pwr))والطول الفعال لا يقل على 3 6mلحزمة الوقود في مفاعل الماء المغلي غمد خارجي يحوي الحزمة كاملة وفائدته يعيد جريان الماء في هذه الحزمة من الوقود والفتحة الموجودة قي قعر حزمة الوقود تحدد معدل جريان الماء في مجمع الوقود المعين وان استقرارية مجمع الوقود تأتي نتيجة لصفائح الربط الـ ( 64 ) في مجمع الوقود( 8×8 )، يمكن أن يحتوي المجمع على قضبان مائية تعمل بمثابة مهدئ لحزمة الوقود ، مفاعل الماء المغلي يحوي عادة على( 764 )مجمع للوقود أي( 50 -40) ألف قلم وقود أي ما يقارب 180 طن من ثاني أكسيد اليورانيوم
* عنصر السيطرة الصليبي الشكل يكون محاطا بأربع حزم من الوقود ، يحتوي على قضبان متعددة
مملوءة بكر بيد البور ون حيث يحتوي كل نصف على ربع قضيب
* إن غليان المبرد في قلب المفاعل تقليل كثافةالمبرد وبالتالي تضعف عملية تهدئة النيترونات مما
يؤدي إلى انخفاض قيمة كثافات القدرة في الجزء العلوي لقلب المفاعل ، مما يجعل تسطيح القدرة ضرورية ……إن أحد طرق السيطرة في مفاعل الماء المغلي تتم عن طريق التحكم في معدل الجريان في المفاعل
* يحتوي الوعاء الفولاذي للمفاعل على قلب المفاعل والمعدات المرافقة بالإضافة لاحتواء وعاء المفاعل على مجمعات الوقود ، فهو يحتوي على مركبات أخرى :
قضبان السيطرة المتواجدة في قعر الوعاء و تحريكها إلى القلب يتم من الأسفل ، كما إن الجزء العلوي من المفاعل يمكن تحريكه لغرض خدمة عملية إعادة تحميل الوقود ، حيث تبلغ أبعاد وعاء مفاعل الماء المغلي الحاوي على جميع هذه المعدات حوالي(ارتفاعm 22 ، قطر6m) ، وهو مصنوع من الفولاذ الكربوني بسماكة ( 16 cm )
*الضغط في ( BWR ) يبلغ حوالي ( 7mp )، عند هذا الضغط درجة غليان الماء حوالي 285 درجة ، وليس جميع الماء في قلب المفاعل يتحول إلى بخار بل حوالي 13 % من الماء الخارج من القلب هو بخار
* يفصل البخار المتولد عن بقية المواد بواسطة مجموعة فاصلات البخار التي موضوعة فوق القلب ، وعند الحد الفاصل بين حالته الغازية والسائلة ، يمر البخار الناتج خلال مجمع التخفيف لإزالة النداوة ، ويسري البخار المجفف إلى خارج الوعاء من خلال جدران بئر التجفيف وبناية المفاعل متجهاً إلى المولد التوربيني ، وهذا البخار يكون مشعاً لتواجد ( N16 ) فيه والذي يمتاز بنصف عمر قصير حوالي ( 7 ) ثانية الكفاءة الحرارية لهذا المفاعل (33 % )
المنظومات المساعدة
1 مفاعل الماء المغلي يملك منظومات الكيمياء لسيطرة على المركبات كما في p w r ) )
2 منظومة إزالة حرارة الانحلال
3 منظومة التنظيف لإزالة نواتج الانشطار ونواتج التآكل والشوائب الأخرى والماء الجاري المسحوب من خلال مضخة تدوير الماء وإرجاعه من خلال مضخة تغذية الماء ، ويتم تنظيف الماء المبرد بواسطة وحدات تخليص الماء من المعادن باستخدام( filter ) وتستخدم هذه المنظومة لإزالة الماء الفائض نتيجة لانخفاض كثافة المبرد بسبب الغليان عند رفع قدرة المفاعل إلى الحد المقرر ، وتتم إزالة حرارة الانحلال بعد إطفاء المفاعل بواسطة منظومة إزالة الحرارة المتبقية والتي هي جزء من منظومة تبريد القلب
يختلف ( bwr ) عن ( pwr ) من حيث أن له كمية اكبر من الوقود لفرض تلبية القدرة المطلوبة ، ولكن توجد امكانيةغير اعتيادية لتغيير القدرة الناتجة لتلبية الاحتياج من الطاقة الكهربائية
Pressurized water reactors
PWR
Pressurized water reactors
فيه دورتان للماء الأولى مغلقة تماما" لنقل الحرارة ويظل الماء فيها سائلا" خلال الدورة بأكملها ويخرج من قلب المفاعل في درجة حرارة تبلغ 325 درجة وضغط 150 جو ، ليمر خلال دورة الماء الثانية التي تولد البخار , والدورة الثانية التي لا يلامس فيها الوقود الماء ترفع من الأمان الاشعاعي ولكن ذلك يزيد الضغط ودرجة الحرارة في قلب المفاعل أكثر مما هي عليه في مفاعلات الماء المغلي , يوجد حوالي 350 مفاعل من هذا النوع في العالم.
مادة الوقود في هذه المفاعلاتuo2 المكبوس بشكل اسطوانات صغيرة (pellets ) والتي قطرها يكافئ ارتفاعها ويساوي تقريبا" 1.27 سنتيمتر(نصف انش) وتغلف بسبيكة الزركونيوم التي تمتاز با نخفاض قيمة المقطع العرضي النيتروني ، تجمع هذه (pellets ) في قلم الوقود ويبلغ طول قلم الوقود الواحد أكثر من 3.6 متر أي 12 قدم وتكون هذه الأقلام مجمعة في حزمة هي التي تستبدل عند اعادة تحميل الوقود .
يتكون قلب المفاعل من عدد كبير من الحزم أو مجمعات الوقود المربعة ، والعديد من مفاعلات الماء المضغوط تستعمل مجمعات تتكون من مصفوفات 15*15 قلم وقود ، وفي مفاعلات الماء المضغوط الحديثة 17*17 قلم، أقلام الوقود مثبتة بواسطة حلزون يفصل في مشبك المجمعات بواسطة تراكيب في قمة وقعر المجمع .
جميع المجمعات في المفاعل يمكن أن يكون لها نفس التصميم الميكانيكي متضمنة" مكانا" لتجمعات قضبان السيطرة ، عند غياب قضبان السيطرة في مجمع الوقود فان مكانها يمكن أن يشغل بمصادر الكترونية .
قدرة هذا المفاعل حوالي 100 Mw اذا كان محتويا" على200 مجمع أي حوالي40 ألف قلم (الى 50ألف قلم ) تتضمن حوالي 110 طن من uo2 .
تتكون معظم قضبان السيطرة من الفضة Ag الانديوم In الكادميوم Cd الماصة للنترونات ممتدة على طول قلب المفاعل ، في حال حدوث أي خلل يمكن أن تسقط هذه القضبان بسهولة في قلب المفاعل نتيجة لوزنها ، حيث تكون نصف مجمعات السيطرة جاهزة لمثل هذا الاطفاء ، والمتبقي يستعمل للسيطرة التشغيلية , بعض قضبان السيطرة تكون المادة الماصة للنترونات فيها في الربع الأخير فقط تستعمل لتعديل توزيع القدرة باتجاه المحور العمودي على المقطع العرضي للقلب ، ومن بعض الوسائل المستخدمة في السيطرة ادخال حامض البوريك في دورة التبريد الابتدائية .
ان كل ما سبق ذكره موضوع مع الوقود في وعاء الضغط الكبير الذي صمم ليتحمل ضغوط عالية في درجات حرارة اشتغال المفاعل حيث ان الضغط في وعاء المفاعل يبلغ 17 Mpa تكون جدران وعاء المفاعل من الكربون الفولاذي سمكه حوالي 20 سنتيمتر أو أكثر وارتفاع الوعاء حوالي 12 متر وبقطر حوالي 4 متر وتكون جميع السطوح الداخلية الملامسة لمائع التبريد مغطاة بالفولاذ غير القابل للصدأ.
يبلغ الضغط في منظومة التبريد الابتدائية حوالي وهذا الضغط يكفي لمنع تكوين البخار , يتولد البخار في منظومة التبريد الثانوية من خلال انتقال الحرارة من مائع التبريد ذي الضغط العالي الى الماء الثانوي ذوالضغط المنخفض ، حيث يحدث الانتقال الحراري من خلال جدران عدد كبير من الأنابيب التي يمر خلالها مائع التبريد في مولدات البخار , ويمر كذلك البخار المتولد خلال نواقل لازالةالرطوبة فيه الى أقل من لغرض ارساله الى المولد التوربيني من أجل انتاج الكهرباء.
المنظومات المساعدة :
منظومة السيطرة على الكيمياء والحجم تجهيز الماء لمنظومة التبريد الابتدائية وتقليل التآكل , وكمية نواتج الانشطار في مائع التبريد ) وتقوم بضبط تركيز حامض البوريك عند استخدامه لأغراض السيطرة على المفاعلية ، وتعمل أيضا" على الترابط مع مولدات الضغط للمحافظة على ضغط حجم مناسب لمائع التبريد وفق ظروف الاشتغال العادي ,ويمكن للمنظومة أن تحافظ على تراكيز معينة للغازات المنحلة بصورة خاصة غاز الهيدروجين المتواجد في مائع التبريد .
وتعتبر منظومة الكيمياء والسيطرة على الحجم مصدرا" للغاز الذي يعامل في منظومة معاملة النفايات الغازية .
منظومة النفايات الغازية : لخزن الغاز واعادته الى منظومة المفاعل في الحالات الضرورية .
منظومة النفايات السائلة : معاملة السوائل الناتجة من منظومات التصريف المختلفة , ففي حالة احتواء السائل على التريتيوم كما هو في المائع الابتدائي فانه يمكن تنقية السائل واعادته الى منظومة الكيمياء والسيطرة على الحجم .
منظومة ازالة الحرارة : ازالة حرارة الاضمحلال المتولدة في منظومة التبريد الابتدائية عند اطفاء محطة القدرة النووية وتتكون من مبادلات حرارية ومضخات .
منظومات السلامة :
والغرض منها التقليل من الاخطار الناجمة في الحوادث المفاجئة في المفاعل والفعل المباشر لها بعد الحادث المفاجئ للايقاف السريع للتفاعل المتسلسل في الحادثة التي تسبب تصدعا" في منظومة التبريد الابتدائية أو التي تقلل من مائع التبريد فان منظومة الضخ الطارئ تقوم بالعمل مباشرة لضمان استمرارجريان المائع , وفي الحالة التي يحدث فيها انصهار الوقود الصلب في قلب المفاعل فان حاوية المواد المشعة ومنظوماتها الملحقة تعمل على تقليل كمية المواد المتسربة .
وهناك منظومات الرش والتبريد والمكثف تستخدم لغرض غسل النشاطية الاشعاعية المتحررة خارج حاوية المواد المشعة.
مفاعلات التوليد السريعة المبردة بالمعادن المنصهرة وأخواتها
هناك طريقان لغرض تحقيق مبدأ التوليد ضمن حدود الموازنة الاكتفائية في كميات المواد الإنشطارية المستهلكة أو المتوالدة أو عبور حدود الموازنة الذاتية:
1 المحافظة على النيترونات بمستوى عالٍ من الطاقة نسبياً بحيث يمكن الاستفادة من كميات النيترونات الناتجة على تفاعل pu 239 .
2 استخدام النور يوم 232 الذي يمكن استخدامه كمادة خصبة تولد u233 والتي تتميز بإنتاجية عالية للنيترونات .
وصل هذا النوع من المفاعلات مرحلة التجربة في بلدان عديدة .
وإذا ما تركت النيترونات السريعة بدون تهدئة فذلك سيساعد على الاستفادة من القيمة العالية لـ ( المردود النيتروني ) يتم توليد 7.2 نيترون لكل نيترون يتم اقتناصه من قبل pu239 . ولكن الصعوبة التي تواجهنا كون قيمة المقطع العرضي لتفاعل الانشطار وطئة جداً في حال النيترونات السريعة لذلك يجب توفير كميات كبيرة من المواد الإنشطارية وهذا ما يوضح سبب تحميل المفاعل بكميات كبيرة من المواد الإنشطارية .
التركيب النووي الأساسي متشابه لجميع مفاعلات التوليد السريعة .
يمكن أن يقسم قلب المفاعل الفعال active core غلاف خارجي blanket والتي ستكون من مادة خصبة وقلب المفاعل يدعى في بعض الأحيان بالبذرة seed والتي تمثل الكتلة الحرجة الحاوية على 15 % مادة انشطارية والباقي مادة خصبة .
وهناك خاصتان مهمتان لمفاعلات التوليد : 1
الحجم الصغير لقلب المفاعل يؤدي إلى الحصول على كثافة عالية للطاقة مقارنة بالمفاعلات الحرارية وهذا يتطلب استخدام نظام تبريد جيد وما يؤدي مواصفات جيدة .
2 تستخدم الـ FBR أقراصاً من أكاسيد الوقود مع أغلفة من الحديد المقاوم للصدأ بدلاً من الزركونيوم .
مفاعلات التوليد السريعة المبردة بالمعادن المنصهرة LMFBR
المعدن المنصهر المستخدم لهذا الغرض هو الصوديوم ، إن قلب المفاعل السريع قيد البحوث يحوي منظومات وقود صغيرة الحجم مقارنةً مع( l w r) والأعمدة أصغر قطراً أيضاً ، والمادة الإنشطارية هي pu239 لأنه من ناحية اقتصادية النيترونات أكثر فائدة بدلاً من u235 . إن قلب المفاعل يكون حاويا على أكاسيد pu و u ويحيط بها الغلاف المادي على u وستكون أغلبيته u239 الذي يعمل على توليد كميات من pu239 تفوق تلك التي تستهلك أثناء تفاعلات الانشطار .
تكون تفاعلات الانشطار في قلب المفاعل أما التوليد في قلب المفاعل والغلاف الخارجي وإن هذه المنظومات تحتاج إلى معاملة الوقود لاستخلاص المادة التي تولدت .
أعمدة الوقود المكونة من لغلاف المفاعل ذات تركيب متجانس أما أعمدة وقود قلب المفاعل فهو مكون من قاعدتها وقمتها مادة خصبة وفي وسطها مادة انشطارية تمثل البذرة ، وبهذا يكون القلب محاطاً بصورة كلية بمادة خصبة ، وكبديل لهذا التصميم يمكن تصميم يعتمد على أساس تقسيم على مناطق صغيرة كل منها يحوي منظومات تحوي مادة انشطارية وأخرى تحوي مادة صلبة .
إن معدن الصوديوم يمكن أن يستخدم بحالته السائلة وعلى مدى واسع من درجات الحرارة وله إمكانية استخدام تحت ظروف الضغط الاعتيادي ، وبالتالي مسألة تصميم دورة التبريد هذه تصبح أمراً سهلاً بالإضافة إلى سهولة التصميم مما يجعل إمكانية تشغيل المفاعل في درجة حرارة عالية مسألة ممكنة ، ولكن يقابل ذلك أيضاً من جهة أخرى فاعلية الصوديوم الكيماوية وخطورته فيما إذا امتزج مع الماء حيث يحدث انفجاراً وفرقعة بسبب تأثير الحرارة العالية الناتجة عن التفاعل والتي تحرق الهيدروجين المتحرر ، مما يؤدي إلى توجب أخذ الاحتياطات الشديدة لمنع حدوث كسر أو تآكل في الأنابيب أو أي جزء من أجزاء دورة التبريد . إن lmfbr مصممة على أن دورة الصوديوم تسخن دورة وسطى للصوديوم ، وفائدة هذه الدورة تسرب أية مواد مشعة . وإن ذلك يستدعي توفير مبادل حراري وسطي بين دورتي الصوديوم الرئيسية ووظيفته عزل دورة الصوديوم الرئيسية عن أي احتمال للاختلاط بالماء في الدورة الأخيرة .
هناك نوعان رئيسيان من FBRقيد النقاش :
1 لدى مجموعة الدول الأوروبية ( النوع الحاوي على حوض( pool type ) والذي يكون قلب المفاعل وأجزاء أخرى واقعة ضمن الوعاء الرئيسي . أي تكون منظومة إعادة تحميل الوقود ومضخة التبريد الرئيسية بالإضافة إلى المبادل الحراري تقع داخل الوعاء الرئيسي للمفاعل وذلك يؤدي إلى اختصار في كميات الأنابيب الخارجية .
2 يستخدم نظام الدورة LOOPTUPE في الولايات المتحدة ، تكون أجزاء منظومة الانتقال الحراري خارج وعاء المفاعل .
مفاعلات التوليد السريعة المبردة بالغاز (GCFBR)
إن هذه المفاعلات مشابهة ل LMFBR من الناحية النيترونية ولكن منظرها الخارجي شبيه ب HTGR من حيث استخدامها الغاز لتبريد قلب المفاعل و تتميز باحتوائها على وعاء كونكريتي ، و أيضا من حيث منظومة الانتقال الحراري
ان GCFBR تتميز بنسبة توليد أعلى من LMFBR و إن هذا يعزى جزئيا إلى غاز الهليوم الذي لا يمتص النيترونات بكمية كبيرة وكذلك لا يهدئها الى حدود وطئة في الطاقة بسبب قلة كثافته مقارنة مع الصوديوم السائل
هنا في هذه الحالة يجب اتخاذ الاحتياطات اللازمة في حالة فقد الضغط لتأمين قيام He بتبريد قلب المفاعل حيث الطاقة المتحررة عالية ، وتصميم وعاء المفاعل بحيث لا يسمح بتسرب الغاز بكميات كبيرة
كما أن استخدام He يزيل خطر استخدام Na وتنفي الحاجة لاستخدام دورة تبريد وسيطة ، كما أن هناك كمية كبيرة من الصوديوم تحيط بقلب المفاعل و التي لها القابلية على امتصاص كمية كبيرة من الحرارة المتولدة مما يجعل استمرارية ضخ الصوديوم مسألة غير حرجة بسبب تيارات الحمل الذاتية.
1. Reactor core
2. Coolant pump
3. Fuel rods
4. Steam generator
5. Steam pumped to turbine, which generates electricity
6. Containme
nt building
م/ن
اسئلة , إختبار , تدريبات / المركبات الكيميائية والطاقة النووية
فآلمرفقآت , وفقكُم آلله ..
بارك الله فيج
شٌكُرأ لجٌ
اللُـه يـٌعُطــًيًـكٌمُ الصٌــحًه و العُــآآفًيــٌه
و كُــل عًـآآآم و انـُتـًمٌ بٌخُـيًر
بارك الله فيج..
والله يوفقج يارب,,
مشكووره
تم ++++
ورقة عمل الطاقة النووية ..
فآلمُرفقآت ,, وفقكُم آلله
يعطيج الف عافية اماراتي 7..
بارك الله فيج عالجهود..
الطاقة النووية
المقدمـة:
الطاقة النووية أو الطاقة الذرية هي الطاقة التي تتحرر عندما تتحول ذرات عنصر كيمائي إلى ذرات عنصر أخر، ( الذرات هي اصغر الجسيمات التي يمكن ان يتفتت إليها أي شيء كان ).
وعندما تنفلق ذرات عنصر ثقيل إلى ذرات عنصرين اخف، فان التحول يسمى "انشطارا نوويا " ويمكن ان يكون التحول " اندماجا نوويا " عندما تتحدد أجزاء ذرتين
يعول على الطاقة النووية أن تصبح أعظم مصادر الطاقة في العالم بالنسبة للإضاءة والتسخين وتشغيل المصانع وتسيير السفن وغير ذلك من الاستخدامات التي لا حصر لها. من ناحية اخرى، يخاف بعض الناس الطاقة النووية لأنها تستخدم أيضا في صنع أعظم القنابل والأسلحة فظاعة وتدميرا في تاريخ العالم. كما ان بعض نواتج عمليه الانشطار تكون سامه للغاية.
العرض:
إنتاج الطاقة النووية
اليورانيوم والبلوتونيوم هما العنصران المستخدمان في إنتاج الطاقة بواسطة الانشطار النووي. كل ذرة من ذرات اليورانيوم أو البوتونيوم ( أو أي عنصر آخر ) لها "نواة " عند مركزها تتكون من " بروتونات " و " نيوترونات ".
الانشطار النووي: عندما يتصادم نيوترون سائب مع ذرة يورانيوم أو بلوتونيوم فان نواة الذرة " تأسر " النيوترون.
عندئذ تنفلق النواة إلى جزئين، مطلقه كميه هائلة من الطاقة كما أنها تحرر نيوترونين أو ثلاثة تتصادم هذه النيوترونات مع ذرات اخرى ويحدث نفس الانشطار في كل مره، وهو ما يسمى بالتفاعل المتسلسل.
ملايين الملايين من الانشطارات يمكن ان تحدث في جزء من المليون من الثانية. وهذا هو ما يحدث عندما تنفجر قنبلة ذرية وعندما تنتج الطاقة النووية للأغراض السلمية العادية فانه يلزم إبطاء التفاعل المتسلسل. ولإنتاج الطاقة للأغراض العادية تحدث الانشطارات في اله تسمى المفاعل النووي أو الفرن الذري. يتم التحكم في سرعة الانشطارات بطرق مختلفة في إحدى الطرق تستخدم قضبان التحكم التي تقصى بعض النيوترونات بعيدا عن التفاعل.
كيف نعيش؟
الاندماج النووي: هذا أيضا يسمى التفاعل النووي الحراري لأنه يحدث فقط عند درجات حرارة عالية جداً. وهو عكس الانشطار النووي. حيث تنصهر (تتحد) معا نواتان خفيفتان لتكونا نواة أثقل.
تأتي الطاقة الشمسية الهائلة من الاندماج النووي، اذا تنصهر أنوية ذرات الهيدروجين الخفيفة لتكون ذرات الهيليوم الأثقل. تنطلق أثناء ذلك كميات هائلة من الطاقة في صوره حرارة.
الاندماج النووي هو الذي ينتج الطاقة المدمرة للقنبلة الهيدروجينية. ومع ذلك، يمكن للاندماج النووي في المستقبل ان يكون احد أعظم المصادر الثمينة للطاقة السليمة لأنه يمكنه استخدام مياه البحار البحيرات والنهار في إنتاج القوى النووية.
م/ن
– الطاقة النووية :
– الطاقةالذرية :
– إنتاج الطاقة النووية
– فوائد الطاقة النووية :
– أضرار النووية :
– استخدامات الطاقة النووية :
– حوادث الطاقة النووية :
– مستقبل الطاقة النووية :
الموضوع : بحث معمق : التفجير النووي – إنتاج الطاقة النووية – الطاقة الذرية – حوادث الطاقة النووية
الطاقة النووية أو الطاقة الذرية هي الطاقة التي تتحرر عندما تتحول ذرات عنصر كيمائي إلى ذرات عنصر أخر، ( الذرات هي اصغر الجسيمات التي يمكن ان يتفتت إليها أي شيء كان .(
وعندما تنفلق ذرات عنصر ثقيل إلى ذرات عنصرين اخف، فان التحول يسمى "انشطارا نوويا " ويمكن ان يكون التحول " اندماجا نوويا " عندما تتحدد أجزاء ذرتين
يعول على الطاقة النووية أن تصبح أعظم مصادر الطاقة في العالم بالنسبة للإضاءة والتسخين وتشغيل المصانع وتسيير السفن وغير ذلك من الاستخدامات التي لا حصر لها. من ناحية اخرى، يخاف بعض الناس الطاقة النووية لأنها تستخدم أيضا في صنع أعظم القنابل والأسلحة فظاعة وتدميرا في تاريخ العالم. كما ان بعض نواتج عمليه الانشطار تكون سامه للغاية.
إنتاج الطاقة النووية
اليورانيوم والبلوتونيوم هما العنصران المستخدمان في إنتاج الطاقة بواسطة الانشطار النووي. كل ذرة من ذرات اليورانيوم أو البوتونيوم ( أو أي عنصر آخر ) لها "نواة " عند مركزها تتكون من " بروتونات " و " نيوترونات ".
الانشطار النووي:
عندما يتصادم نيوترون سائب مع ذرة يورانيوم أو بلوتونيوم فان نواة الذرة " تأسر " النيوترون.
عندئذ تنفلق النواة إلى جزئين، مطلقه كميه هائلة من الطاقة كما أنها تحرر نيوترونين أو ثلاثة تتصادم هذه النيوترونات مع ذرات اخرى ويحدث نفس الانشطار في كل مره، وهو ما يسمى بالتفاعل المتسلسل.
ملايين الملايين من الانشطارات يمكن ان تحدث في جزء من المليون من الثانية. وهذا هو ما يحدث عندما تنفجر قنبلة ذرية وعندما تنتج الطاقة النووية للأغراض السلمية العادية فانه يلزم إبطاء التفاعل المتسلسل. ولإنتاج الطاقة للأغراض العادية تحدث الانشطارات في اله تسمى المفاعل النووي أو الفرن الذري. يتم التحكم في سرعة الانشطارات بطرق مختلفة في إحدى الطرق تستخدم قضبان التحكم التي تقصى بعض النيوترونات بعيدا عن التفاعل.
كيف نعيش؟
الاندماج النووي:
هذا أيضا يسمى التفاعل النووي الحراري لأنه يحدث فقط عند درجات حرارة عالية جداً. وهو عكس الانشطار النووي. حيث تنصهر (تتحد) معا نواتان خفيفتان لتكونا نواة أثقل.
تأتي الطاقة الشمسية الهائلة من الاندماج النووي، اذا تنصهر أنوية ذرات الهيدروجين الخفيفة لتكون ذرات الهيليوم الأثقل. تنطلق أثناء ذلك كميات هائلة من الطاقة في صوره حرارة.
الاندماج النووي هو الذي ينتج الطاقة المدمرة للقنبلة الهيدروجينية. ومع ذلك، يمكن للاندماج النووي في المستقبل ان يكون احد أعظم المصادر الثمينة للطاقة السليمة لأنه يمكنه استخدام مياه البحار البحيرات والنهار في إنتاج القوى النووية.
فوائد الطاقة النووية :
الأرض لها موارد محدودة من النفط والفحم وهذه الموارد ستستخدم خلال 63-95 سنة حيث تقدر الكميات المؤكدة من احتياطي النفط بالعالم بحدود (1.4-2.1) ترليون برميل. الفترة أعلاه (63-95) سنة حسبت على أساس الاستهلاك الفعلي للنفط حاليا مع زيادة بحدود 1% – 2% سنويا حيث متوسط الاستهلاك السنوي بحدود 80 مليون برميل نفط .
لأغراض المقارنة فان طن واحد من اليورانيوم يعطي طاقة تعادل الطاقة الناتجة من ملايين الأطنان من الفحم أو ملايين البراميل من النفط .
الآثار الجانبية لحرق الفحم والنفط يؤدي إلى تلوث البيئة بينما مفاعل نووي مصمم بشكل جيد ويعمل تحت رقابة وإشراف جيدين لا يؤدي إلى إطلاق أي تلوث في الجو .
أضرار الطاقة النووية :
الولايات المتحدة وروسيا يمتلكان فقط 50.000 قنبلة نووية وهيدروجينية لو لا شاء الله تم استخدامها فهي كافية لقتل كل إنسان على الأرض
الانفجار النووي ينتج أشعة قاتلة تستطيع أن تؤدي بالإنسان إلى الوفاة مع الوقت وحتى التأثير على صيانته القامة . وهذا ما حدث عند استخدام قنبلة هيروشيما وقنبلة ناكازاكي في اليابان.
وكذلك عندما تعرضت بعض المفاعلات النووية إلى أعطال أدى إلى تسرب الوقود النووي كما حدث في CHERNOYLE عام 1986 حيث تعرض مئات الألوف من الناس إلى الأشعة حيث توفى الكثيرين خلال أيام وإصابة الباقين بالسرطانات المختلفة.
المفاعلات النووية تنتج فضلات نووية تبقى مصادر للإشعاع لملايين السنين يجب التخلص منها ولا يمكن وضعها كأية نفايات أخرى بأي موقع بل يجب خزنها بأماكن خاصة حتى لا تؤثر على الناس
.
استخدامات الطاقة النووية :
تمكن الإنسان خلال العقود الأخيرة من استقلال الطاقة النووية لخدمة التقدم التقني في عدة مجالات منها :
في الطب للعلاج والتشخيص والتعقيم –
-في الصناعة لانتاج أشباه الموصلات والمعالجات الكيماوية والكشف عن العيوب الصناعية وتقنيات اختبار الجودة وفي عمليات التعدين والبحث عن الخامات الطبيعية .
-في الزراعه لاستنباط أنواع جديدة من المحاصيل ذات إنتاجية عالية وانتقاء نوعيات معينة من البذور ومقاومة الآفات والحشرات وزيادة مدة تخزين المنتجات الزراعية .
-في إنتاج الطاقة الكهربائية
من إنتاج الكهرباء في فرنسا يتم عبر الطاقة النووية77%
في اليابان30%
في الولايات المتحدة20%
وبصورة عامة فان 20% من الطاقة الكهربائية في العالم تنتج حاليا من الطاقة النووية .
الحوادث والكوارث النووية :
الجميع يعلم ما حل بمدينة هيروشيما ومدينة ناكازاكي خلال الحرب العالمية الثانية حيث انذهل العالم بحجم الخسائر المترتبة عن استخدام الطاقة الذرية وأيقظ هذا الاستخدام وعيا جديدا وهو :
ان سلاح واحد تحمله وسيلة نقل واحدة يمكنه إبادة معظم السكان وأن يدمر البنية الطبيعية لمنطقة أو مدينة بكاملها وزاد في تفا قم الخوف من الإشعاعات وهو القاتل غير المرئي الذي يضرب ضحاياه لا على الفور بل على امتداد الأيام والأشهر والسنين وحتى الأجيال التالية .
يمكن توضيح أخطار السلاح النووي كما يلي :
التفجير النووي:
لكي نتعرف على قدرة التفجير النووي علينا مقارنتها بقدرة التفجير العامة .
يكون التفجير النووي ( بافتراض تساوي الحجم ) أكثر قوة بملايين المرات من التفجير العادي
أثناء الانفجار تتحرر كمية كبيرة من الإشعاع القاتل المرئي ( عكس التفجير العادي) .
تبقى بعد التفجير النووي إشعاعات غير مرئية قاتلة تستمر لسنوات طويلة .
الإشعاعات الذرية :
مصادر الإشعاع الذري :
الإشعاع الذري الطبيعي ويقصد به الأشعة الكونية الواردة من الفضاء الخارجي والعناصر المشعة الموجودة في القشرة الأرضية .
الإشعاع الذري المصنع ويقصد به الإشعاع الناتج من التفجيرات النووية ومفاعلات ومحطات الطاقة والمصادر الطبيعية والمنتجات الاستهلاكية التي تحتوي على مواد مشعة.
أنواع الإشعاع :
أشعة ألفا
وهي غير قادرة على اختراق الجلد
أشعة بيتا
تستطيع المرور عبر نسيج الجسم البشري لمسافة 1-2 سنتيمتر
أشعة كاما
لا يستطيع إيقافها إلا الرصاص السميك أو الخرسانة أو طبقة كثيفة من الماء
النيوترونات
مستقبل الطاقة النووية
بعض الناس يعتقد أن الطاقة النووية موجودة لتبقى وعلينا التعلم على كيفية معايشتها .
آخرين يقولون أن علينا التخلص منها أسلحة ومفاعلات لتجنب أضرارها كل منطق له مؤيديه ومعارضيه ويبقى على كل واحد منا أن يقرر ما هو العمل ويفكر كمواطن أرضي وليس كمواطن ينتمي لدولة معينة حيث أن الأضرار تتجاوز الأوطان .
م.ن
بالتوفيق
شكراً لمرورج
شكراً ع المرور
لج كِل معآني آلشكر وآلعرفآن (=
شٌكُرأ لجٌ
اللُـه يـٌعُطــًيًـكٌمُ الصٌــحًه و العُــآآفًيــٌه
و كُــل عًـآآآم و انـُتـًمٌ بٌخُـيًر
الطاقة بشكل عام تصنف الة نوعين أساسين هما الطاقة المتجددة Renewable Energy مثل الطاقة الشمسية وطاقة باطن الأرض والطاقة الحية….. والنوع الثاني هو الطاقة الغير متجددNonrenewable Energy مثل الطاقة الكهربائية والطاقة النووية والطاقة الكيمائية …..
مع العلم ان معظم الطاقة التي نستهلكها تأتي على شكل طاقة غير متجدد وهي دائما تتحول الى حرارة ترسل الى الجو المحيط (هل في النتيجة ترتفع درجة حرارة الهواء المحيط باكرة الأرضية؟) ( هل يمكن ان نقسم جميع انواع الطاقة على انها تنحصر بين الطاقة الحركية والكامنة وكيف ؟)
قانون حفظ الطاقة
الطاقة لا تفنى ولا تستحدث ويمكن ان تتحول من شكل الى لآخر بتأثير فعل معين او بدونه وكذلك يمكن ان تتحول الى مادة. ويمكن النظر الى حركة البندول البسيط لملاحظة تبدل الطاقة من شكل الى آخر (لماذا يتوقف البندول بعد حين؟)
الطاقة والمادة
يمكن ان تتحول الطاقة الى مادة كما يحدث إثناء توليد زوج إلكترون- بوزترون من أشعة كاما وكذلك يمكن ان تتحول المادة الى طاقة كما يحدث في الانشطار النووي وفق العلاقة التالية:
E=m C(+2)
( سوف نتطرق إلى معظم أنواع الطاقة تباعا من خلال هذا الموقع)
الطاقة النووية:
ان الجهود التي بذلت بعد الحرب العالمية الثانية في البحوث والتنمية في مجال الذرة وتركيبها وسيل الدراسات النظرية والعملية في هذا المجال جعلت من محاول استثمار الطاقة النووية كبديل مؤهل للنفط في مجال إنتاج الكهرباء وهذه الجهود مازالت مستمرة في التغلب على المصاعب في إنتاج هذه الطاقة وكذلك وسائل المان التي يشترط إتباعها عند استخدام هذه الطاقة من حيث عدم المساس بالتوازن الطبيعي للبيئة والمردود الاقتصادي. وتسابقت دول العالم في دراسة احتياطي الوقود النووي لديها أي اليورانيوم وكلفة الاستفادة منه ويوازي ذلك الاستخدام العسكري لهذه الطاقة. وقلما نال موضوع علمي أهمية عسكرية واقتصادية وسياسية كما نال موضوع الطاقة النووية
تظهر الطاقة النووية كطاقة كامنة تربط مكونات النواة ذات الحجم الصغير جدا بحيث عندا تتفكك النواة الى مكوناتها أطلقت هذه الطاقة على شكل حرارة وجسيمات تمتلك طاقة حركية هائلة وأشعة وقد احتر العلماء لإيجاد تفسير مقنع لطبيعة القوى النووية ووضعت نماذج كثيرة ومازال البحث جاري في مجال النماذج النووية لمعرفة طبيعة هذه الرابطة والتي عندما تتفكك تظهر على شكل طاقة هائلة. فمثلا ان الطاقة التي تربط المكون الواحد لنواة التربتيوم H (3,1) – عدد النيوكلونات الكلي 3 وعدد البروتونات 1- هي 8.482 MeV ( هذه الوحدة تكافيء 1.6E-13 جول) وطاقة الربط للنيوكلون الواحد النواة الهيليوم He(3,2) هي 7.711MeV فنلاحظ ان هناك فرق في طاقة الربط سببه طاقة كولوم الناتجة عن تنافر البروتونات مع بعضها وكلما ازداد العدد الكتلي ارتفعت طاقة الربط حتى تتشبع عند أنوبة الحديد Fe وثم تعدو الى الانخفاض مع زيادة العدد الكتلي حتى تصل الى اقل قيمها عند مجموعة اليورانيوم.
عندما تتهيج النواة ( طرق تهيج النواة تختلف كليا عن طرق التهيج الاعتيادية!!!) ترتفع نيكلوناتها الى مستويات للطاقة مرتفعة نسبيا وتصبح النواة بحالة متهيجة Excited وتعود الى وضع الاستقرار بأن تبعث الأشعة النووية مثل ( كاما- بيتا- ألفا..) وتعود الى وضع الاستقرار اعتمادا على العمر النصفي ! للانحلال وعند الاستمرار في اكتساب الطاقة ( الطاقة هنا تكتسب بقيمتها وليس بتركيزها !!!) فان النيوكلونات تقذف خارج النواة وتترك عند النواة طاقة كبيرة لا تتحملها مما يؤدي الى انشطارها Nuclear Fission
التفاعلات النووية Nuclear Reaction
هي عملية إنتاج الطاقة او امتصاصها نتيجة للإتحاد الأنوية مع بعضها أو تصادم ( اقتناص) النواة مع جسيمة وذلك لتوليد نواة جديدة ( مثلا اقتناص نواة اليورانيوم 235 للنيوترون يولد نواة اليورانيوم 236 المتهيجة او اقتناص نواة النيتروجين للبروتون يولد نواة الأكسجين ويطلق اشعة كاما) وعندما تعود النواة الى وضع الاستقرار تطلق الطاقة التي بحوزتها على شكل أشعة كاما او حتى جسيمات اخرى حتى لو كانت من نفس نوع الجسيمة التي تفاعلت معها الفترة بين التهيج وإطلاق النواتج تكون طويلة جدا بمليارات من السنين او قصيرة جدا قد تصل الى 10E-16 sec
الانشطار النووي Nuclear Fission
هو واحد من التفاعلات النووية والتي تكتسب فيها النواة طاقة فوق تحمل طاقة الربط مما يؤدي الى انشطارها وهذه فكرة كانت تراود علمء الفيزياء لفترة زمنية طويلة لمعرفتهم المسبقة عن كمية الطاقة التي يمكن الحصول عليها.
في عام 1933 اكتشف فيرمي ان للنيوترون قابلية كبيرة على التفاعل مع الأنوية وقد تم إنتاج عدد من النظائر المشعة وثم توزعت النيترونات حسب الطاقة التي تمتلكها وتبين ان النيترونات الحرارية يمكن ان تؤسر من قبل النواة بسهولة. وفي عام 1939 اعلن عالمان من ألمانيا بأنهما وجدا عنصر البار يوم كناتج من قذف اليورانيوم بالنيوترونات وقد خمنا فيما بعد بان الباريوم لا بد ان ينتج من انشطار اليورانيوم وفي نفس الوقت اعلن العالم بور بانه يمكن انتاج تفاعل متسلسل! إثناء اقتناص النيترونات. وفي عام 1940 اكتشف البلوتونيوم Pu(239-94) ( لاحظ انه أثقل من اليورانيوم ويحتوي على عدد اكبر ويسمى من العناصر ما بعد اليورانيوم!) وفي عام 1942 توصل فيرمي ومجموعته الى إنتاج اول تفاعل متسلسل جرب تحت منصات ملعب لكرة القدم وبحلول عام 1945 تم تشغيل مفاعلات إنتاج البلوتونيوم وفي نفس العام استخدمت القنابل على اليابان.
لكل التفاعلات النووية يوجد مايسمى بمساحة المقطع وهو مقياس لاحتمالية حدوث التفاعل النووي فبالنسبة لليورنيوم 235 مساحة مقطعه كبيرة جدا بالنسبة للنبوترونات الحرارية ( النيترونات الحرارية هي النيترونات التي تتحرك دون ان يتم تبادل حراري بينها وبين الوسط ويمكن حساب طاقتها بعلاقة بولتزمان!!) بينما اليورنيوم 238 يمتلك مساحة مقطع كبير بالنسبة الى النيترونات السريعة ولهذا فان النيوترون الحراري يقتنص بسرعة من قبل اليورانيوم 235 مولدا نواة متهيجة مع انبعاث كمية من الطاقة تمثل طاقة الربط للنيوترون في النواة لآن النواة عندما دخل النواة لا بد وان يرتبط مع باقي المكونات في النواة وتنطلق من هذه العملية اشعة كاما والنيوترونات والطاقة المتبقية عند نواة اليورانيوم 236 تكون اكبر من طاقة الربط وهي مستقرة وعليه تهتز بشكل كبير يؤدي الى تشوهها أولا ومن ثم انشطارها الى مكونين يسميان بنواتج الانشطار ( نسبة عدد النيترونات الى عدد البروتونات فيهما مقربة الى النسبة في اليورانيوم وهي قسمة العدد 144 لنيوترونات على العدد 92 للبروتونات وتساوي 1.6 تقريبا او قريبا من هذا الرقم ) من أمثلتها نواة الزينون Xe(140-54) ونواة الباريوم Ba(142-56) ولا توجد نواتج محدد لشظايا الانشطار Fission Fragmentsهذه وانما هناك ثلاثين احتمالا للنواتج. وقد وجد عمليا ان شظايا الانشطار يكون عددها الكتلي من 72 الى 158 . هذه النواتج عندما تنتج تكون بعيدة عن خط الاستقرار!! وتطلق أشعة بيتا لكي تهبط او ترتفع نحو خط الاستقرار ولهذا سوف تحدث سلسلة من التفاعلات النووية تسمى بالتفاعلات المتسلسلة والنيوترونات الناتجة من الانشطار والتي بكون عددها بين 2 و3 ( حسب نوعية شظايا الانشطار) تكون سريعة وتتفاعل مع انويه أخرى لا يشترط اليورانيوم وتكون نظائر أخرى بعيدة عن خط الاستقرار وأشعة كاما وهكذا ( تسمى هذه النيوترونات بالنيوترونات اللحظية) وهذه النيترونات السريعة لا تتفاعل مع اليورانيوم 235 وإنما يجب ان تبطأ كما يحث في المفاعلات النووية!! حتى يقتنصها اليورانيوم 235
الطاقة المنبعثة عند الأنشطار
ان عملية الانشطار تمتلك أهمية كبيرة لكون معدل طاقة الانشطار قد يصل الى 200MeV للنواة الواحدة ويمكن حساب معدل طاقة الانشطار من المعادلة الشبه تجريبية للكتلة!! حيث ان طاقة الربط للجسيم الواحد هي بحدود 8.4MeV عند الأعداد الكتلية 80 الى 150 وقد وجد ان معظم نواتج الانشطار تمتلك عدد كتلي ضمن هذا المعدل، وطاقة الربط تبلغ 7.5MeV في منطقة اليورانيوم أي يوجد فرق مقداره 0.9MeV بين النواة المركبة ونواتج الأنشطار وهذا الفرق ينطلق عند عملية الانشطار
Binding energy/236=0.9
B.E=236×0.9=212.9=200 MeV
هذه الكمية من الطاقة للانشطار الواحد توزع بالشكل التلي:
Kinetic Energy of fission fragment 167
K.E> of neutrons=5
Energy of Gamma=7
Energy of Beta=5
Energy of delayed Gamma=5
Neutrino energy =11
Sum=200 MeV
ان انشطار اليورانيوم هو مصدر للطاقة وكذلك مصدر للنيترونات البطيئة والسريعة والتي تستخدم في مختلف قطاعات العلوم في الفيزياء وكذلك تستخدم في استمرار التفاعل وحدوث سلسلة من التفاعلات النووية تنتهي مع انتهاء المادة المنشطرة او في تداخل هندسي وفيزياء مدروس ومقنن!!
انشطار نواة واحدة من اليورانيوم يبعث طاقة مقدارها 200MeV=3.2E-4 erg ولمول الواحد فان الطاقة الناتجة هي 1.93E+20 erg ( ألمول يحتوي عدد افاكادرو من الذرات أي 6.23E+23 ذره) ول تم تحويل ذلك الى حرارة فانه يعادل 2E+13 cal وهذه الطاقة وإذا عرفنا ان تسخين لتر من الماء من الصفر الى 100 درجة يستهلك 100000Cal فيمكن تقدير كمية الطاقة هذه والتي يمكن ان تعادل تفجير 20220kg من مادة الـ TNT وعند استغلالها كمصدر للقدرة نجد ان الانشطار الواحد يحرر 32.2E-11 w والانشطار الكامل الغرام واحد من اليورنيوم يجهز 8.2E+20 W.sec او يساوي 2.3E+10kW.h أي ميكا واط لليوم الواحد واذا استمر تحرير الطاقة ليوم كامل فان الكيلوغرام ينتج حرارة بمعدل 100 ميكا واط وإذا حولت هذه الحرارة إلى كهرباء بكفاءة مقدارها 30% فان الطاقة الكهربائية تصبح 300000 kW وهذا يكافئ الطاقة الكهربائية الناتجة من معمل كهرباء يستهلك 2500 طن من الفحم في اليوم الواحد!!
م.ن
تسلمين غلآي ..
موفقين
منورات فديتكم
^.*