ابغي تقرير عن الروابط الكيميائية
دخيلكم ولا اتردوني
مادة حمراء، ضاربة إلى اللون البني، تتشكّل على سطح الحديد أو الصلب عندما يتعرّض للهواء الرطب، وعند استخدام المصطلح بمفرده فإنه يعني صدأ الحديد، الذي يتألف أساساً من أوكسيد الحديد المائي. ويتكوّن الصدأ من اتحاد أوكجسين الهواء مع الحديد في عملية تُعرف بالأكسدة.
ويُمكن إزالة طبقة رقيقة من صدأ الحديد أو الصلب بحكّها، أو باستخدام مسحوق تلميع، أما الطبقات السميكة من الصدأ فتتطلّب استخدام المبرد لإزالتها، كما تستخدم الأحماض لإزالة الصدأ.
من التفاعلات البسيطة التي نعرفها ونشاهد آثارها صدأ الحديد , وهذا التفاعل يتم بين الحديد والهواء الرطب ( يحتوي الهواء على الأوكسجين وبخار الماء وهما اللذان يتفاعلان مع الحديد وينتج عن هذا التفاعل صدأ الحديد ) ، ويمكن أن نمثل الأمر بطريقة بسيطة كما يلي :
حديد + هواء (أوكسجين + بخار ماء)——–> صدأ الحديد
صدأ حديد التسليح وتأثيره علي المنشأت:
تهتم الدول الغربية في طرق حماية المنشات ومعالجتها من صدأ حديد التسليح نظرا لكون هذه المشكلة اقتصادية بالمقام الأول .
ففي الولايات المتحدة الأمريكية حصرت تكلفة الصدأ السنوية في العقد السابق بحوالي 150 مليون دولار نتيجة لمشاكل الصدأ علي المباني والجسور والتي تحدث في أمريكا وأوربا نتيجة إذابة الجليد باستخدام الملح .
وفي المملكة المتحدة تقدر تكلفة إصلاح الجسور نتيجة للصدأ في حديد التسليح بحوالي 616 مليون جنيه إسترليني وهذا بإنجلترا وويلز فقط ( 1989م ) وهي فقط 10 % من إجمالي الجسور في المملكة المتحدة .
أما في المنطقة العربية وخاصة دول الخليج فإن المشكلة اعمق و أوسع نتيجة لنقص عمر المنشاة بسبب الصدأ والتكاليف العالية جدا لإعادة العمران ,بالإضافة لتميز دول الخليج بارتفاع درجة الحرارة ونسبة الأملاح العالية ومشاكل المياه الجوفية وتأثيرها , كل هذه العوامل زادت من مشاكل حدوث صدأ الحديد في المنطقة بدرجة كبيره جدا .
إذا من الواضح أن صدأ حديد التسليح في المنشآت الخرسانية يهدد الاستثمارات العقارية في الوطن العربي عامة ودول الخليج العربي بوجه خاص ويؤثر كثيرا في اقتصاد هذه الدول ويستنزف الكثير في أعمال الإصلاح والحماية للمنشات العامة والخاصة , ولا بد من استخدام احدث الطرق لحماية وإصلاح المنشات للمحافظة علي الثروات الوطنية.
يتكون الصدأ بوجه عام نتيجة تعرض الحديد للهواء والماء , والخرسانة بطبيعتها مادة مسامية تحوي رطوبة ولذلك من الطبيعي حدوث صدأ للحديد بداخلها !!!
لكن ليس بالضرورة حدوث الصدأ للحديد في الخرسانة لان الخرسانة مادة قلوية وهي معاكسة للأحماض وبالتالي فإن الخرسانة تقوم بحماية الحديد من الصدأ بتكون طبقة قلوية كثيفة تمنع حدوث الصدأ ( طبقة حماية سلبية ).
ويحدث الصدأ نتيجة تكسير طبقة الحماية السلبية وظهور الصدأ علي سطح حديد التسليح , يبدأ صدأ حديد التسليح في التكون من نقرة صغيره ( Pit Formation ) في السيخ ثم تزداد هذه النقر ويحدث اتحاد بينها مما يكون الصدأ العام .
وهناك أسباب أخرى لتكون الصدأ وهي البكتيريا . وهي بالغالب موجودة بالتربة وتقوم بتحويل الأملاح والأحماض إلي حمض الكبريتيك الذي يهاجم الحديد ويسبب عملية الصدأ .
معدل الصدأ يرتبط بعوامل كثيرة ولكن في منطقتنا الرطوبة ودرجة الحرارة عوامل رئيسيه ومؤثرة بدرجة كبيره جدا في معدلات الصدأ ولذلك يجب التحكم في تلك العوامل ليصبح معدل الصدأ قليل بحيث لا يسبب مشكلة كبيرة علي المنشأة العقارية ..!!
الوقاية خير من العلاج وإذا تم الحفاظ علي المنشاة العقارية من التعرض للصدأ يكون ذلك اكثر واقعية وحفاظا علي الثروة الوطنية .
ويتم تفادي صدأ حديد التسليح في الخرسانة بالتقيد بمواصفات التصميم والتنفيذ وبإتباع الكودات المختلفة الخاصة بتصميم القطاعات الخرسانية والتي تعمل علي تقليل احتمالات حدوث الصدأ في حديد التسليح .
ومن العوامل المهمة في حماية المباني الخرسانية من صدأ حديد التسليح طريقة استخدام الخرسانة وتحديد محتوي الإسمنت والاهتمام بالمعالجات الخرسانية أثناء التنفيذ .
وهناك طرق مختلفة لحماية حديد التسليح من الصدأ من أهمها :
1. موانع الصدأ
وهي نوعين يعتمد النوع الأول علي حماية الطبقة السلبية حول حديد التسليح ويعتمد النوع الآخر علي منع توغل الأكسجين داخل الخرسانة .
2. استخدام الحديد المجلفن Galvanized Bar
ويعتبر الحديد المجلفن ذو كفاءه مناسبة خصوصا للمباني التي تتعرض للكربنه .
3. دهان حديد التسليح بالابوكسي
هذه الطريقة أعطت نتائج إيجابية وخاصة لحديد التسليح المعرض لمياه البحر
4.حديد ستنلس ستيل Stainless Steel
نظرا لارتفاع تكاليف هذا النوع من الحديد فإن استخدامه يتم في نطاق محدود
5.حماية أسطح الخرسانة من النفاذ يه
وذلك إما باستخدام مادة سائله يتم رشها أو دهانها أو ألواح وطبقات من المطاط أو البلاستيك ( membrane).
المقدمــة:-
هنــاك علاقــات تربــط بيــن العنــاصــر الكيميــائيــة ككل .. فكثيــر مــا نرى عنصــر الكلــور مجــالس لعنصــر الصــوديــوم، و الكثيــر مــن العنــاصــر الأخرى، فماذا يربطهم يــا ترى ؟ فــي هذا التقرير سوف نتعرف علــى الروابط الكيميائية و خصــائص كل رابطــة ..
العـــرض :-
الرابطة الكيميائية:
هى ظاهرة تواجد الذرات متماسكة معا في الجزيء أو البلورة. وجميع الروابط الكيميائية ترجع لتفاعل الإلكترونات الموجودة في الذرة. وهذه الإلكترونات جزء من المدار الذري للذرة (Atomic Orbital AO), ولكن في الرابطة, يقوموا بتكوين مدار جزيئي (Molecular Orbital MO). وتفاعلات هذه الإلكترونات النووية تنتج من القوى الأساسية للكهرومغناطيسية. وتكون الذرات رابطة لو أن مداراتها أصبحت أقل في الطاقة بعد تفاعلها مع بعضها البعض.
وهناك 5 أنواع مختلفة من الترابط الكيميائي تستخدم لتصنيف أنواع التفاعلات الذرية. وهذه التصنيفات يتم تعريفها بواسطة التوزيع الإلكتروني ومستويات الطاقة. وللروابط الفعلية خصائص يصعب تقريقها, ولذلك فيمكن أن تكون هناك رابطة تشتمل على نوعين من أنواع الترابط الآتية.
أنواع الترابط الكيميائي الخمسة هى:
• الرابطة الأيونية.
• الرابطة التساهمية.
• الرابطة التساهمية التناسقية.
• الرابطة الفلزية.
• الرابطة الهيدروجينية
ويقال للإلكترونات الموجودة في المدار الجزيئي لرابطة أنها "متمركز" على ذرة/ذرات معينة, أو "غير متمركزة" بين ذرتين أو أكثر. ونوع الرابطة بين ذرتين يعرف بتمركز الكثافة الإلكترونية أو عدم تمركزها بين ذرات المادة.
وعديد من المركبات ترتبط عن طريق الرابطة التساهمية. ويمكن توقع بناء هذه الجزيئات بإستخدام نظرية تكافؤ الرابطة, ونسبة الذرات المتضمنة يمكن تفهمها أبضا عن طريق بعض المفاهيم مثل رقم التأكسد. والمركبات الأخرى التى يكون بنائها أيوني, يمكن تفهم تركيبها عن طريق نظريات الفيزياء التقليدية. وعموما, فإن المركبات الأكثر تعقيدا مثل المعقدات الفلزية تحتاج كيمياء الكم لتفهمها.
وفى حالة الترابط الأيوني, تكون معظم الإلكترونات متمركزة حول ذرات معينة, ولا تنتقل الإلكترونات بين الذرات كثيرا. ويتم تعيين شحنة لكل ذرة حتى يمكن تعريف التوزيع الماردرات الجزيئية لها. وتتميز القوة بين الذرات (أو الأيونات) بكمية موحدة الخواص من الجهد الكهربي الساكن.
وبالعكس, ففى الترابط التساهمي, تكون الكثافة الإلكترونية بين الروابط غير راجعة لذرات معينة, ولكن تكون في حالة عدم تمركز في الماردرات الجزيئية بين الذرات. كما تساعد نظرية الإندماج الخطي للمدارارت الجزيئية المشهورة, على وصف بناء المدارات الجزيئية والطاقات بإستخدام المدارات الذرية للذرات الآتية منها. وبعكس الرابطة الأيونية النقية, فإن الرابطة التساهمية يمكن ان يكون له تباين خواص مباشر.
ويمكن للذرات أيضا أن تكون روابط وسيطة بين الرابطة التساهمية والأيونية. وهذا لأن هذه التعريفات مبنية على درجة عدم تمركز الإلكترونات. فيمكن للإلكترونات أن تكون غير متمركزة جزيئا بين الذرات, ولكن تقضي وقت أطول حول ذرة معين أكثر من ذرة أخرى. وهذا النوع من الترابط غالبا ما يسمي "تساهمي قطبي"
جميع هذه الروابط تكون قوى "بين" الجزيئات وتقوم بإمساك الذرات معا في الجزيء. ويوجد هناك قوى بيج جزيئية والتى تسبب تجاذب أو تنافر الجزيئات. وتتضمه هذه القوى التجاذب الأيوني, الرابطة الهيدروجينية, تجاذب ثنائي قطبي-ثناي قطبي, تجاذب ثنائي قطبي محثوث.
ويعتبر كتاب لينوس باولينج "طبيعة الرابطة الكيميائية" أفضل كتاب على الإطلاق تحدث عن موضوع الروابط الكيميائية.
الرابطة الأيونية:
هي الرابطة التي تنشأ بين ذرتين تختلفان في المقدرة على كسب أو فقد الإلكترونات وتكون بين أيوني هاتين الذرتين الموجب والآخر السالب الشحنة فتنشأ قوة جذب كهربائي بينهما، وتختلف نسبة الأيونات المفقودة والمكتسبة فمثلا تحتاج ذرة الأكسجين لأيونين من البوتاسيوم لأن المدار الأخير يحتاج لإلكترونين ليصل لحالة الاستقرار أي ثمانية إلكترونات.
K2O <—-O2+
وتحدث الرابطة الأيونية عادةً بين الفلزات (ذات طاقة التأين المنخفضة والتي تميل لفقدان الإلكترونات ) واللافلزات (ذات الألفة الالكترونية المرتفعة والتي تميل لاكتساب الالكترونات ) .
مثال:- يرتبط أيون الصوديوم + Na بأيون الكلور – Cl في مركب كلوريد الصوديوم برابطة أيونية .
Na ——-> Na+ + 1e Cl + 1e ———> Cl- v ______ Na + Cl ——–> Na+ + Cl- v
فعنصر الصوديوم يفقد الكترون واحد من مستوى تكافؤه ليصبح أيون موجب أحادي ذو توزيع الالكتروني مشابه للتوزيع الالكتروني للغاز الخامل الذي قبله وهو النيون .
Na / 1S2, 2S2, 2P6, 3S1 Na+ / 1S2, 2S2,2P6
وعنصر الكلور يكتسب الكترون واحد في مستوى تكافؤه ليصبح أيون سالب ذو تركيب الكتروني مشابه لتركيب الغاز الخامل الذي بعده وهو الارجون .
P6 3S2 3P5 Cl / 1S2, 2S2, _________ 2Cl- / 1S2 2S2 2P6 3S2 3P6
والحقيقة أن هذا الكلام غير دقيق فلا يوجد جزيئات مستقلة في المركبات الأيونية بل توجد على شكل تجمع أيوني يعرف بالأشكال بلورية بحيث يكون كل أيون ذو شحنة معينة محاطاً بعدد من الأيونات ذو الشحنة المخالفة .
وللرابطة الأيونية طاقة تعرف باسم ( طاقة الرابطة الأيونية ) وهي طاقة وضع ناتجة ( سالبة ) تعتمد قيمتها على كمية الشحنة المتوفرة بالأيونين وعلى نصف قطر ( الحجم الذري ) كلِ منهما.
طاقة الرابطة الأيونية = – ي2 / ر
حيث : كمية الشحنة . ر : مجموع نصفي قطر الأيونين
ويتضح من العلاقة السابقة أنه كلما زادت كمية الشحنة كلما نقصت طاقة الرابطة الأيونية ( زيادة قيمة البسط تزيد من قيمة الكسر وبأن الكسر سالب الشحنة فإن الناتج يقل ) ويصبح المركب الأيوني أكثر استقراراً
أما بالنسبة لنصف القطر فيلاحظ من العلاقة أنه كلما كبر نصف القطر الذري لأحد الأيونين أو كليهما زادت طاقة الرابطة الأيونية ( زيادة قيمة المقام تقلل من قيمة الكسر وبما أن الكسر سالب فالقيمة تزداد ) ويصبح المركب أقل استقراراً.
وللتغلب على طاقة الرابطة الأيونية وكسرها ( فصل الأيونين المكونين للرابطة ) فإننا نحتاج إلى طاقة ( موجبة ) تعرف هذه الطاقة باسم طاقة الترتيب البلوري.
وتعرف طاقة الترتيب البلوري بأنها الطاقة التي نحتاجها لنحول مركباً بلورياً ( أيونياً ) في الحالة الصلبة إلى أيونات منفصلة في الحالة الغازية ) إذاً فطاقة الترتيب البلوري طاقة مساوية لطاقة الرابطة الأيونية ( كحد أدنى ) مع اختلاف الإشارة .
طاقة الترتيب البلوري = ي2 / ر
وعلى هذا فإن ارتفاع قيمة طاقة الترتيب البلوري لمركب ما يعني أن هذا المركب أكثر استقراراً وتزداد طاقة الترتيب البلوري بزيادة قيمة كمية الشحنة أو نقصان نصف القطر الذري ( لأحد الأيونين أو كليهما ) كما يتضح من العلاقة السابقة
خصائص المركبات الأيونية:
كما ذكرنا في السابق بأن المركبات الأيونية توجد على شكل تجمعات أيونية في أشكال معينة يطلق عليها ( الأشكال البلورية ) ونجد في هذه الأشكال ترتيب بلوري منظم للأيونات بحيث أن كل أيون ذو شحنة معينة يكون منجذباً إلى مجموعة من الأيونات ذو الشحنة المخالفة ، بمعنى أن الأيون الواحد يكون مرتبطاً بعدة روابط أيونية في نفس الوقت وهذا ما يفسر وجود المركبات الأيونية عادةً في الحالة الصلبة ( كثافة عالية ) كما يفسر هذا الوضع أيضاً درجات الانصهار والغليان المرتفعة لهذه المركبات.
ومن أهم صفات المركبات الأيونية عدم قدرتها على التوصيل الكهربي في الحالة الصلبة نظراً لارتباط الأيونات وعدم قدرتها على الحركة بينما تصبح موصلة للكهرباء عند صهرها أو إذابتها في الماء ( الأيونات حرة الحركة في المصهور وفي المحلول المائي )
الرابطة التساهمية:
هى أحد أشكال الترابط الكيميائي وتتميز بمساهمة زوج أو أكثر من الإلكترونات بين الذرات, مما ينتج عنه تجاذب جانبي يعمل على تماسك الجزيء الناتج. تميل الذرات للمساهمة أو المشاركة بإلكتروناتها بالطريقة التى تجعل غلافها الإلكتروني ممتليء. وهذه الرابطة دائما أقوى من القوى بين الجزيئية, الرابطة الهيدروجينية, كما أنها تماثل الرابطة الأيونية في القوة وأحيانا تكون أقوى منها.
تحدث الرابطة التساهمية غالبا بين الذرات التى لها سالبية كهربية متماثلة (عالية), حيث أنه تلزم طاقة كبيرة لتحريك إلكترون من الذرة. الرابطة التساهمية غالبا ما تحدث بين اللا فلزات, حيث تكون الرابطة الأيونية أكثر شيوعا بين الذرات الفلزية والذرات اللا فلزية.
تميل الرابطة التساهمية لأن تكون أقوى من انواع الروابط الأخرى, مثل الرابطة الأيونية. وبعكس الرابطة الأيونية, حيث ترتبط الأيونات بقوى كهرساكنة (Electrostatics) غير موجهة, فإن الرابطة التساهمية تكون عالية التوجيه. وكنتيجة, الجزيئات المرتبطة تساهميا تميل لأن تتكون في أشكال مميزة قليلة نسبيا, بزوايا محددة.
تاريخ الرابطة التساهمية
فكرة الترابط التساهمي يمكن أن ترجع إلى جيلبرت إن لويس, والذى قام في عام 1916 بوصف مساهمة أزواج الإلكترونات بين الذرات. وقد قام بإقتراح ما يسمى ببناء لويس أو الشكل الإلكتروني النقطي والذى يكون فيه إلكترونات التكافؤ (الموجودة في غلاف التكافؤ) ممثلة بنقط حول الرمز الذري. وتكون ازواج الإلكترونات الموجودة بين الذرات ممثلة للروابط التساهمية. كما أن الأزواج العديدة تمثل روابط عديدة, مثل الرابطة الثنائية أو الثلاثية. وبعض الأشكال الإلكترونية النقطية ممثلة في الشكل المجاور. وطريقة أخرى لمتثيل الرابطة هى تمثيلها كخط, موضحة بالأزرق.
بينما أن قكرة تمثيل أزواج الإلكترونات تعطى طريقة مؤثرة لتصور الرابطة التساهمية, فإن دراسات ميكانيكا الكم تحتاج لفهم طبيعة تلك الرابطة وتوقع تركيب وخواص الجزيئات البسيطة. وقد قام كل من والتر هتلر و فريتز لندن بعمل أول توضيح ناجح من وجهة نظر ميكانيكا الكم للترابط الكيميائي, وخاصة للهيدروجين الجزيئي, في عام 1927. وقد كان عملهم مبنيا على أساس تصور رابطة التكافؤ, والذى إفترض أن الرابطة الكيميائية تتكون عندما يكون هناك تداخل جيد بين المدارات الذرية للذرات المساهمة. وهذه المدارات الذرية تعرف بأن بينها وبين بعضها زاوية محددة, وعلى هذا فإن تصور رابطة التكافؤ يمكن أن تتوقع زوايا الروابط بنجاح في الجزيئات البسيطة. عادة ما تكون هذه الرابطة بين الافليزات فقط
ترتيب الرابطة: ترتيب الرابطة هو مصطلح علمي لوصف عدد أزواج الإلكترونات المتشاركة بين الذرات المكونة للرابطة التساهمية. وأكثر أنواع الرابطة التساهمية شيوعا هو الرابطة الأحادية, والتى فيها يتم المشاركة بزوج واحد فقط من الإلكترونات. كل الروابط التى بها أكثر من زوج من الإلكترونات تسمي روابط تساهمية متعددة. المشاركة بزوجين من الإلكترونات تسمى رابطة ثنائية, والمشاركة بثلاثة أزواج تسمى رابطة ثلاثية. ومثال للرابطة الثنائية في حمض النيتروس (بين N و O), ومثال للرابطة الثلاثية سيانيد الهيدروجين (بين C و H).
الرابطة الأحادية يكون نوعها رابطة سيجما, والرابطة الثنائية تكون واحدة سيجما وواحدةباي, والرابطة الثلاثية تكون واحدة سيجما وإثنين باي.
الروابط الرباعية, رغم ندرتها, فإنها موجودة. فكل من الكربون والسيليكون يمكن أن يكونا مثل هذه الرابطة نظريا. ولكن الجزيء الناتج يكون غير مستقر تماما. وتلاحظ الروابط الرباعية الثابتة في الروابط فلزات إنتقالية-فلزات إنتقالية, وغالبا ما تكون بين ذرتين من الفلزات الإنتقالية في المركبات العضوفلزية (organo****llic).
الروابط السداسية تم ملاحظتها أيضا في الفلزات الإنتقالية في الحالة الغازية ولكنها نادرة أكثر من الرباعية.
كما انه توجد حالة خاصة من الرابطة التساهمية تسمي رابطة تساهمية تناسقية.
صلابة الرابطة:
بصفة عامة, يمكن للذرات المرتبطة برابطة أحادية تساهمية ان يحدث لهما دوران بسهولة نسبيا. ولكن, في الربطة الثنائية والثلاثية يكون الأمر بالغ الصعوبة حيث أنه لابد من حدوث تداخل بين المدارات باي, وهذه المدارات تكون في حالة توازي.
الرنين:
يمكن لبعض انواع الروابط أن يكون لها أكثر من شكل نقطي (مثلا الأوزون O3). ففى الشكل النقطي. تكون الذرة المركزية لها رابطة أحادية مع أحد الذرات الأخرى ورابطة ثنائية مع الأخرى. ولا يمكن للشكل النقطي إخبارنا أي من الذرات لها رابطة ثنائية, فكل من الرتين لهما نفس الفرصة لحدوث الرابطة الثنائية. وهذان التركيبان المحتملان يسميا البناء الرنيني. وفى الحقيقة, فإن تركيب الأوزون رنيني مهجن بين تركيبيه الرنينين. وبدلا من وجود رابطة ثنائية, وأخرى أحادية, فإنه في الواقع يكون 1.5 رابطة تقريبا 3 إلكترونات في كل منهما في كل الأوقات.
وتوجد حالة خاصة من الرنين تحدث في الحلقات الأروماتية للذرات (مثلا البنزين). وتتكون الحلقات الأروماتية من ذرات مرتبة في شكل دائري (متماسك عن طريق الرابطة التساهمية) تتبادل الرابطة الأحادية والثنائية فيما بينها طبقا للشكل النقطي. وفى الواقع, تميل الإلكترونات لأن تتوزع بشكل متساوي في الحلقة. الإلكترونات التى تشارك في الشكل الحلقي غالبا ما تمثل بدائرة داخل الحلقة.
النظرية الحالية:
حاليا تم ضم نظرية رابطة التطافؤ مع نظرية المدار الجزيئي. وفى هذا التصور, عند تواجد الإلكترونات معا, تتفاعل المدارات الذرية لتكوين أوربيتال جزيئي مهجن. وهذه المدارات الجزيئية هى خليط بين المدارات الذرية الأصلية وتمتد بصفة عامة بين الذرتين المرتبطتين.
بإستخدام ميكانيكا الكم فإنه من الممكن حساب التركيب الإلكتروني, مستويات الطاقة, زوايا الروابط, المسافة بين الروابط, العزم ثنائي القطب, وتررد الذوء للجزيئات البسيطة بدقة عالية. وحاليا يمكن حساب المسافة والزوايا بين الروابط بدقة كما لو كانا يقاسا بالفعل (المسافة منسوبة للنانو متر, والزاوية بالدرجة). وفى حالة الجزيئات الصغيرة, فإن حسابات الطاقة تكون دقيقة لدرجة كافية لإستخدامها لتعيين حرارة التكون (ميكانيكا حرارية), وكذلك الطاقة اللازمة لعبور حاجز الطاقة.
الرابطــة الفلزيــة:
عندما ترطبت الفلزات مع بعضها البعض فانها لا تكتسب التركيب الاكتروني للغازات النبيلة فمن السهل ان تفقد ذرات الفلزات مثل الصوديوم والبوتاسيوم الكترونات تكافؤها لتصبح ايونات موجبة الان سالبيتها الكهربائية منخفضة
وهذى تعريفها قوى التجاذب الكهربائي الناتجة بين الايونات الموجبة وهذة الاكترونات السالبة بالرابطة الفلزية وهي التي تربط البلورة بالكامل. العوامل التي تؤثر على قوة الرباط الفلزي :-
1) كثافة الشحنه تساوي —– شحنة الايون/حجم الايون حيث ان شحنة الايون هي الشحنه التي يكتسبها الفلز بعد ان يخسر كل الالكترونات الموجده في المدار الاخير. (+1.+2.+3) 2) حجم الايون :- يتناسب حجم الايون تناسب طردي مع عدد المدارات.
• كلما كانت كثافة الشحنه على الايون اعلى كلما زادت قوة الرباط الفلزي ونتيجه لذلك درجة الانصهار تكون اعلى.
ما هي الخصائص التي يمنحها هذا الرباط للفلز ؟
ترجع الكثير من خصائص الفلزات الطبيعية إلى طبيعة هذه الرابطة فالتوصيل الكهربي والتوصيل الحراري للفلزات سببه هو حركة الالكترونات الحرة بين الذرات . حركة الالكترونات الحرة داخل المعدن تنتظم عند تمرير التيار الكهربائي من خلاله وتتقدم الالكترونات من القطب السالب إلى الموجب.
الخــاتمــة :-
بعــد ان قرأنــا هــذا البحــث و تعرفنــا علــى أهــم الروابــط الكيميــائيــة و خصــائص كــل منهــا .. استطعنــا التعــرف علــى الســر الذي يربــط العنــاصــر ببعضهــا .. و كيــف ان بعض العنــاصــر تطمــح للتعــرف علــى تلك الغــازات الراقيــة ( الغازات النبيلة ) ..
و الآن اتمنــى أن أشكــر علمــائنــا علــى كــل ما قدمــوه من جهــد و تعــب لمعرفــة أســرار العنــاصــر ، و نقل كــل المعلــومات التي حصلـوها لنا لنستفيد منها أخيــراً ..
والسموحة ع القصوور
الله يعطيكم الغافيه في الدنيا والاخره
سوري على هذا الرد البسيط